Circuit Basics

Studying voltage and current in circuits can start with two laws of conservation.

Note: Some of the links are dead, but this MIT Opencourse pdf has a detailed explanation. And Kahn Academy has some videos on the current laws as well.

  • KCL: Current flow into a node must equal the flow out of the node. (A node is a point on the wire connecting components in a circuit–usually a junction).
(KCL: Kirchoff's Current Law) Current flowing into any point on a circuit is equal to the current flowing out of it, A simple circuit with a voltage source (like a battery) and a resistor.
(KCL: Kirchoff’s Current Law) Current flowing into any point on a circuit is equal to the current flowing out of it, A simple circuit with a voltage source (like a battery) and a resistor.

  • KVC: The sum of all the voltage differences in a closed loop is zero.

KVL: The voltage difference across the battery (9 Volts) plus the voltage difference across the resistor (-9 Volts) is equal to zero.
KVL: The voltage difference across the battery (9 Volts) plus the voltage difference across the resistor (-9 Volts) is equal to zero.

Things get more interesting when we get away from simple circuits.

Current flow into a node (10 A) equals the flow out of the node (7 A + 3 A).
Current flow into a node (10 A) equals the flow out of the node (7 A + 3 A).

Note that the convention for drawing diagrams is that the current move from positive (+) to negative (-) terminals in a battery. This is opposite the actual flow of electrons in a typical wired circuit because the current is a measure of the movement of negatively charged electrons, but is used for historical reasons.

Based on the MIT OpenCourseWare Introduction to Electrical Engineering and Computer Science I Circuits 6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011.

Leave a Reply