Basic 3d Printing with OpenScad

In Geometry we’re using OpenScad to create basic, 3d geometric solids and printing them to get to know the 3d printers.

A basic example is creating a cylinder with a radius of 10 mm and a height of 5 mm. The code in OpenScad looks like this (OpenScad Cheat Sheet):

cylinder(r=10, h=5);

and it looks like:

A simple cylinder in OpenScad

After we Render the object, we export it as a 3d .stl file. This we can load into the 3d printer software.

  • For our smaller, Prusa, printer, the program is PrusaSlicer. You’ll need to slice the object and then export the G-code. The program that actually prints the object is Pronterface.
  • For the larger Lulzbot printer, we use the Cura program and can print directly from the software once we’ve sliced the model.

The end result, on the Prusa printer looks like this:

3d Printable Microscopes

A few interesting, low-cost but potentially lab-grade, microscopes that would be great Makerspace projects for students.

OpenFlexure: Out of the University of Bath, this has a Raspberry Pi at the core that can control the stage, focus, and sensor (using the RPi camera module). Since it’s modular the cost varies with the image quality you’re aiming for, but it looks like you can achieve even high resolution results relatively cheaply. They have great detail on their website, including their own version of Raspbian to install on the Pi, so this looks like an good starter project.

UC2: I really like the look of this building block, LEGO-style, system. It seems extremely flexible and there are some interesting projects that go beyond your standard microscope. There are a lot of designs you can go with, including an Arduino or using a Raspberry Pi and camera, but they claim to get good results just with smartphones. This is a big, sprawling project, which suggests a slightly steeper learning curve.

Hat tip to Maggie Eisenberger for introducing me to these.

Liquid Chessboard

Chessboard under regular (day) light.
Chessboard under regular (day) light.

I used the computer controlled (CNC) Shopbot machine at the Techshop to drill out 64 square pockets in the shape of a chessboard. One of my students (Kathryn) designed and printed the pieces as part of an extra credit project for her Geometry class.

The pockets were then filled with a clear eqoxy to give a liquid effect. However, I mixed in two colors of pigmented powder to make the checkerboard. The powder was uv reactive so it fluoresces under black (ultra-violet) light.

Under a black (ultra violet) light bulb.
Under a black (ultra violet) light bulb.

The powder also glows in the dark.

Glowing in the dark.
Glowing in the dark.

TechShop

Laser-etched map projections on wood.
Laser-etched map projections on wood.

This September a TechShop branch opened up in St. Louis. I’ve been aware of these neat Makerspaces for a few years now, so it was a pleasant surprise when one turned up in town. Even more surprising (and just as pleasant) was that a parent at our school, who was so excited by the opportunities that a place like the TechShop would offer to a school that tries to emphasize hands-on, experiential education, donated four memberships to the school–one for a faculty member and three for students.

Since there are some age restrictions on which machines minors can use–a lot of the woodshop is off limits until they’re 16 and even then adult supervision is required, I arranged a small application for the student memberships that was only open to middle and high-schoolers. Based on the response I got back, we split the annual memberships by semester, so we have three students using it this fall and three more will have access to them in the spring.

The way the TechShop works is that they have a wide range of equipment under one roof and once you take a safety and basic usage (SBU) class on the particular machine you want to use you can reserve time on the machines. There’s a wood shop with saws, sanders, a lathe, and a CNC machine; a metal shop with the same; a set of 3d printers; a set of laser cutters/etchers; a fabric shop with some serious sowing machines, including one that is computer controlled; an electronics shop; a plastics work area with vacuum forming and injection molding machines. They also do a set of interesting classes on using the design software and some interesting projects that can take advantage of the tools available–I have my eye on the Coptic Bookbinding, and the Wooden Bowl making classes. Finally, they’re set up with classrooms where you can bring students in for small STEAM classes, which includes things like using Arduinos.

Students etching an anodized aluminum luggage tag during their SBU class on the laser cutter/etcher.
Students etching an anodized aluminum luggage tag during their SBU class on the laser cutter/etcher.

So far, we’ve all taken the Laser class, and there’s just so much that you can do with the laser that we’ve been spending a lot of time experimenting. The students have been etching signs–including a grave marker for our goat MJ who recently passed away–as well as pictures, luggage tags, and making presents. Since this is a machine that the older students can use independently I’ve lost track of everything they’ve been doing.

I’ve also taken the woodshop wood CNC class, so my own experiments have been a bit more expansive, including making dry-erase erasers, floor-holders for quivers for the archery program, simple chemistry molecular model sets (just 2d), boxes for Ms. Fu’s math cards, and I’m trying to figure out how to make a clock.

Volumes of Revolution

3D printed volumes.
3D printed volumes.

It can be tricky explaining what you mean when you say to take a function and rotate it about the x-axis to create a volume. So, I made an OpenScad program to make 3d prints of functions, including having it subtract one function from another. I also 3d printed a set of axes to mount the volumes on (and a set of cross-sections of the volumes being rotated.

The picture above are the functions Mrs. C. gave her calculus class on a recent worksheet. Specifically:

 y = e^{-x}+2

from which is subtracted:

 y = 0.5 x