12 Cups: Thermal Energy

Students study the twelve different containers, using reason to deduce their thermal properties.
Students study the twelve different containers, using reason to deduce their thermal properties.

I gave the middle-schoolers twelve containers — cups, bottles, mugs, etc. — that I found around the classroom and asked them to figure out which one would keep in heat the best. In fact, I actually asked them to rank the containers because we’d just talked and read about thermal energy. This project is intended to have them learn about thermal energy and heat transfer, while discovering the advantages of the scientific method through practice.

Day 1: Observation and Deduction: When I asked them to rank that containers based on what they knew, I’d hoped that they’d discuss the thermal properties of the cups and bottles. And they did this to a certain degree, however, part of their reasoning for the numbers one and two containers, were that these were the ones I used. Indeed, since I use the double walled glass mug with the lid (container number 7) almost every day, while I only use the steel thermos-mug (container number 6) on field trips (see here for example), they reasoned that the glass mug must have better thermal properties.

The twelve containers are labeled with sticky notes, while students' initial assessment of  thermal ranking is written on the paper pieces in front of the containers.
The twelve containers are labeled with sticky notes, while students’ initial assessment of thermal ranking is written on the paper pieces in front of the containers.

Day 2: Exploratory Science and Project Organization: On day 2, I asked the class to see how good their ranking of the containers was by actually testing them. Ever since the complex machines project where they had to choose their own objective, they’ve been wanting more independence, so I told them to pretend I was not in the room. I was not going to say or do anything to help, except provide them with a hot plate and a boiling kettle, and keep an eye out for safety.

They got to work quickly. Or at least some of them did while the other half of the class wondered around the room having their own, no-doubt important, conversations. I pulled them all back in after about half and hour to talk about what had happened. But before we discussed anything, I had them write down — pop quiz style — what their procedure was and how it could be improved. The vagueness of some of the answers made it obvious to both to me and the ones who had not been paying attention who’d actually been working on the project.

Experiments in progress.
Experiments in progress.

Of the ones who’d been working in the project, I brought to their attention that they’d not really spent any time planning and trying out a procedure, but they’d just jumped right in, with everyone following the instructions of the one student who they usually look to for leadership. Their procedure, while sound in theory would have benefited from a few small changes — which they did recognize themselves — and the involvement of more of the class. In particular, they were trying to check the temperature of the water every 10 seconds, but it would take a few seconds to unscrew lids, and about 5 additional seconds for the thermometer to equilibrate. They also were restricted because they were all sharing one stopwatch while trying to use multiple thermometers.

Day 3: First Iteration: Now that they’ve had a bit of trial by fire, tomorrow they’ll try their testing again. I’m optimistic that they’ve learned a lot from the second day’s experience, but we’ll see how it turns out.

A Movie in Atoms

A neat stop-motion movie made by manipulating individual atoms.

This is a great spark-the-imagination video because you can use it to talk about the physics of atoms and molecules, and what is temperature — they had to cool the atoms down to 4 Kelvin to keep them from moving too much.

How they did it:

More detail from Slate, and NPR:

Ice on the Creek

Clear ice in January, 2013: Ice thick enough to support a person’s weight, but clear enough to see through. Creating this beautiful shock pattern took a lot of time and concerted effort.

In January, the creek froze over after a few days of below zero (Celcius) temperatures. However, we’d missed the snow that usually accompanies a drop in temperature (it had hit to the south of us), so the ice froze clear and firm. Since they’re used to seeing the whiter ice — on lakes and ice rinks, for example — my students wondered why the ice was so clear.

In February, we got both the snow and cold, which incorporated air bubbles into the ice, resulting in a very different, cloudier ice.

Snow incorporated into the ice makes it cloudier and, I think, somewhat ethereal. Note the same fallen walnut tree trunk as in the picture above.

It was quite neat to see the contrast, and made me wonder about the ecological impact. After all, clear ice lets sunlight through much more efficiently than cloudy ice.

Infrared Cloak

Image adapted from Wired.

In an interesting application of thermodynamics, BAE Systems has developed panels that can be placed on a tank to mask what it looks like to infra-red goggles, or help it fade into the background.

The panels measure the temperature around them and then warm up or cool so they’re the same temperature and therefore emitting the same wavelength of infrared light. So someone looking at the tank with infra-red goggles would have a harder time distinguishing the tank from the background.

The panels are thermoelectric, which means they use electricity to raise or lower their temperatures, probably using a Peltier device.

Peltier devices, also known as thermoelectric (TE) modules, are small solid-state devices that function as heat pumps. A “typical” unit is a few millimeters thick by a few millimeters to a few centimeters square. It is a sandwich formed by two ceramic plates with an array of small Bismuth Telluride cubes (“couples”) in between. When a DC current is applied heat is moved from one side of the device to the other – where it must be removed with a heatsink. The “cold” side is commonly used to cool an electronic device such as a microprocessor or a photodetector. If the current is reversed the device makes an excellent heater.

— Peltier-info.com: Peltier Device Information Directory

A Peltier element - it cools on one side and heats on the other. Image via Wikipedia.

The Thermal Difference Between Land and Water

The change in temperatures over the course of the year. Click image to enlarge. Images from 1987 via NOAA's GLOBE Earth System Poster.

The continents heat up faster than the oceans, and they cool down faster too. You can see this quite clearly in the animation above: notice how cold North America gets in the winter compared to the North Atlantic. It’s why London has an average January low temperature of 2˚C while Winnepeg’s is closer to -20˚C, even though they’re at almost the same latitude. There are a few reasons for the land-ocean cooling differences, and they all have to do with how heat is absorbed and transported.

(1) Specific Heat Capacity. Water has a higher heat capacity than land. So it takes more heat to raise the temperature of one gram of water by one degree than it does to raise the temperature of land. 1 calorie of solar energy (any type of energy really) will warm one gram of water by 1 degree Celcius, while the same calorie would raise the temperature of a gram of granite by more than 5 degrees C. The Engineering Toolbox has specific heat capacities of common materials.

(2) Transparency. The heat absorbed by the ocean is spread out over a greater volume because the oceans are transparent (to some degree). Since light can penetrate the surface of the water the heat from the sun is dispersed over a greater depth.

(3) Evaporation. The oceans loose a lot of heat from evaporation. In the evaporative heat loss experiment, While there is some evaporation from wet soils and transpiration by plants, the land does not have anywhere near as much available moisture to cool it down.

(4) Currents. Not only do the oceans absorb heat over a greater depth, but they can also move that energy around with their currents. The solar energy absorbed at the equator gets transported towards the poles, while the colder polar water gets transported the other way. Currents help average out ocean temperatures.

The Freezing Core Keeps the Earth Warm

The internal structure of the Earth.

The inner core of the Earth is made of solid metal, mostly iron. The outer core is also made of metal, but it’s liquid. Since it formed from the solar nebula, our planet has been cooling down, and the outer core has been freezing onto the inner core. Somewhat counter-intuitively, the freezing process is a phase change that releases energy – after all, if you think about it, it takes energy to melt ice.

The energy released from the freezing core is transported upward through the Earth’s mantle by convection currents, much like the way water (or jam) circulates in a boiling pot. These circulating currents are powerful enough to move the tectonic plates that make up the crust of the earth, making them responsible for the shape and locations of the mountain ranges and ocean basins on the Earth’s surface, as well as the earthquakes and volcanics that occur at plate boundaries.

Conceptual drawing of assumed convection cells in the mantle. (via The Dynamic Earth from the USGS).

Eventually, the entire inside of the earth will solidify, the latent heat of fusion will stop being released, and tectonics at the surface will slow to a stop.

The topic came up when we were talking about the what heats the Earth. Although most of the energy at the surface comes from solar radiation, students often think first of the heat from volcanoes.

Note: An interesting study recently published showed that although the core outer core is mostly melting, in some places it’s freezing at the same time. Unsurprising given the convective circulation in the mantle.

Model of convection in the Earth's mantle. Notice that some areas on the mantle are hotter, creating hot plumes, and some are cooler (image from Wikipedia).

Note 2: Convection in the liquid outer core is what’s responsible for the Earth’s magnetic field, and explains why the magnetic polarity (north-south) switches occasionally. We’ll revisit this when we talk about electricity and dynamos.