Entries Categorized as 'Physics'

How to Cool Something to a Billionth of a Kelvin

January 10, 2016

How to create ultra-cold temperatures (and what it tells us about the universe).

And this article (Below Absolute Zero: Negative Temperatures Explained) tells how to get below absolute zero.

Citing this post: Urbano, L., 2016. How to Cool Something to a Billionth of a Kelvin, Retrieved September 25th, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: Montessori Muddle; Hat tip: Montessori Muddle.

Circuit Basics

December 30, 2015

Studying voltage and current in circuits can start with two laws of conservation.

  • KCL: Current flow into a node must equal the flow out of the node. (A node is a point on the wire connecting components in a circuit–usually a junction).
(KCL: Kirchoff's Current Law) Current flowing into any point on a circuit is equal to the current flowing out of it, A simple circuit with a voltage source (like a battery) and a resistor.

(KCL: Kirchoff’s Current Law) Current flowing into any point on a circuit is equal to the current flowing out of it, A simple circuit with a voltage source (like a battery) and a resistor.

  • KVC: The sum of all the voltage differences in a closed loop is zero.

KVL: The voltage difference across the battery (9 Volts) plus the voltage difference across the resistor (-9 Volts) is equal to zero.

KVL: The voltage difference across the battery (9 Volts) plus the voltage difference across the resistor (-9 Volts) is equal to zero.

Things get more interesting when we get away from simple circuits.

Current flow into a node (10 A) equals the flow out of the node (7 A + 3 A).

Current flow into a node (10 A) equals the flow out of the node (7 A + 3 A).

Note that the convention for drawing diagrams is that the current move from positive (+) to negative (-) terminals in a battery. This is opposite the actual flow of electrons in a typical wired circuit because the current is a measure of the movement of negatively charged electrons, but is used for historical reasons.

Based on the MIT OpenCourseWare Introduction to Electrical Engineering and Computer Science I Circuits 6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011.

Citing this post: Urbano, L., 2015. Circuit Basics, Retrieved September 25th, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: Montessori Muddle; Hat tip: Montessori Muddle.

New Particles

December 16, 2015

Physicists in Europe Find Tantalizing Hints of a Mysterious New Particle: This new particle, if confirmed to exist (the data is not conclusive) seems to go beyond the Standard Model of physics that we know and love.

The last sub-atomic particle discovered was the Higgs boson, which is shown in the graph below.

Finding the Higgs Boson "The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million. " from ATLAS.

Finding the Higgs Boson “The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million. ” from ATLAS.

Citing this post: Urbano, L., 2015. New Particles, Retrieved September 25th, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: Montessori Muddle; Hat tip: Montessori Muddle.

Note Cards for Equations

November 16, 2015

equation_note_card

Part of physical science for the middle school is to start going beyond the conceptual, and making the connection between equations in science and algebra. So, we’ve started making note cards for the numerous laws we’ve encountered so far.

equations-P1010778

Citing this post: Urbano, L., 2015. Note Cards for Equations, Retrieved September 25th, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: Montessori Muddle; Hat tip: Montessori Muddle.

Black Hole Consuming a Star

October 25, 2015

For the student who asked how do we know about black holes if we can’t see them. From NASA. Based on the paper: http://www.nasa.gov/mission_pages/chandra/destroyed-star-rains-onto-black-hole-winds-blow-it-back.html

Citing this post: Urbano, L., 2015. Black Hole Consuming a Star, Retrieved September 25th, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: Montessori Muddle; Hat tip: Montessori Muddle.

Synthetic Muscle Fibers from Fishing Line

August 16, 2015

I need some students to try this at school. Muscle fibers that contract on heating sounds like a great way to open and close vents for air circulation (in the chicken coop to start with).

Popular Mechanics

Citing this post: Urbano, L., 2015. Synthetic Muscle Fibers from Fishing Line, Retrieved September 25th, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: Montessori Muddle; Hat tip: Montessori Muddle.

Relativity in a Canoe

September 29, 2014

The world moves around the canoe.

The world moves around the canoe.

Perhaps not surprisingly, my middle school students have a difficult time wrapping their heads around the idea of multiple frames of reference. We were in a canoe on the Current River and I asked the student paddling in the rear of the boat to look at me and answer the question, “Are we in the canoe moving, or are we steady in one spot and everything around us moving?”

This resulted in some serious cognitive processing. And she still has not gotten back to me with an answer.

Another student, faced with the same question, thought it over overnight and concluded that it was a riddle. He figured the correct answer was that the canoe was moving and the land was still. I asked him to think about it a little more (because he was only half right).

Interestingly enough, I’ll be teaching my Advanced Physics class this block, and the first chapter has a neat little section on coordinate systems. I’m curious to see if the 11th and 12th graders have an easier time with the concept.

The canoe moves.

The canoe moves.

Citing this post: Urbano, L., 2014. Relativity in a Canoe, Retrieved September 25th, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: Montessori Muddle; Hat tip: Montessori Muddle.

Arduino for Beginners

July 22, 2014

Arduino UNO connected to a breadboard from the starter kit.

Arduino UNO connected to a breadboard from the starter kit.

I’ve been avoiding working with the Arduino microcontrollers because I’d prefer to be able to program in Python with the Raspberry Pi (for example). However, since the 3d printer we just built this summer uses an Arduino for a brain, I broke down and picked up the Arduino Starter Kit (via Adafruit).

The Arduino Projects Book is an excellent resource for the beginner.

The Arduino Projects Book is an excellent resource for the beginner.

What I liked most about the Starter Kit most is the Arduino Projects Book that comes with it. It’s a wonderful introduction to circuits, electronics, circuit diagrams, and microcontrollers at the beginners level. If I offer an Arduino elective, I’ll use it as a textbook. Indeed, I’ll probably use bits of it as a reference when I teach circuits in middle school and Advanced Physics.

As for the programming, the basics, at least, are pretty straightforward. I got a blinking LED controlled by a switch input up an running pretty quickly. The code requires two loops, one to set up the inputs and the output, and a loop for the program to follow. The code below has a blinking light that’s controlled via pin 4, but changes to a solid light when the switch is pressed (the input for the switch is pin 2). The wiring for the circuit is shown in the picture at the top of the page.

blink_circuit

int switchOn = 0;

void setup(){
  pinMode(2, INPUT);
  pinMode(4, OUTPUT);
}

void loop(){
  switchOn = digitalRead(2);
  
  if (switchOn == HIGH) {
    digitalWrite(4, HIGH);
  } else {
    digitalWrite(4, LOW);
    delay(500);
    digitalWrite(4, HIGH);
    delay(200); 
  }
  
}

Citing this post: Urbano, L., 2014. Arduino for Beginners, Retrieved September 25th, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: Montessori Muddle; Hat tip: Montessori Muddle.

Creative Commons License
Montessori Muddle by Montessori Muddle is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.