Posted March 7, 2012
by Lensyl Urbano
So that my students could more easily check their answers graphically, I put together a page with a
more complete analysis of parabolas (click
this link for more details).
Analyzing Parabolas
Solution by Factoring:
y = x^{2} x
Converting the forms
The key relationships are the ones to convert from the
standard form of the parabolic equation:


(1) 
to the
vertex form:


(2) 
If you multiply out the vertex equation form you get:

y = a x^{2}  2ah x + ah^{2} + k 
(3) 
When you compare this equation to the standard form of the equation (Equation 1), if you look at the coefficients and the constants, you can see that:
To convert from the vertex to the standard form use:
Going the other way,
To convert from the standard to the vertex form of parabolic equations use:
Although it is sometimes convenient to let k not depend on coefficients from its own equation:


(10) 
The Vertex and the Axis
The nice thing about the vertex form of the equation of the parabola is that if you want the find the coordinates of the vertex of the parabola, they're right there in the equation.
Specifically, the
vertex is located at the point:


(11) 
The axis of the parabola is the vertical line going through the vertex, so:
The equation for the axis of a parabola is:


(12) 
Focus and Directrix
Finally, it's important to note that
the distance (d) from the vertex of the parabola to its focus is given by:


(13) 
Which you can just add
d on to the coordinates of the vertex (Equation 11) to get the
location of the focus.


(14) 
The directrix is just the opposite, vertical distance away, so the
equation for the directrix is the equation of the horizontal line at:


(15) 
References
There are already some excellent parabola references out there including:
Citing this post: Urbano, L., 2012. Everything You (N)ever Wanted to Know About Parabolas, Retrieved November 21st, 2017, from Montessori Muddle: http://MontessoriMuddle.org/ .
Attribution (Curator's Code ): Via: ᔥ Montessori Muddle; Hat tip: ↬ Montessori Muddle.
Posted in Algebra, Mathematics, Technology, Useful websites.
Tags: algebra, graphing interactives, graphs, html5, interactive posts, interactive websites, math, polynomials.
Recommend this post (Google):
Share and remix for noncommercial use, but cite and share alike.