Cool and Wet, but Quiet

Early morning rain drops fall on the lake at Natchez Trace.

It’s dawn, but the sun has not yet come up. Even when it does it won’t be able to break through the solid, low sheet of stratus clouds. Make that nimbostratus clouds, ’cause it’s raining. The light, forever-drizzle as the spring warm fronts push slowly, persistently, against the winter.

Male cardinal getting ready to protect his territory.

It’s cold, but the birds are out, and so am I. Impervious to the weather, two bright males compete for the attention of a female. She stands apart, as patient as the rain. The males chase each each other from tree to tree. Their intentions are overt, their challenges obvious; yet there is so much less tension than when primates interact.

Studied indifference.

I appreciate their lack of subtlety.

I like rainy days. They bring back memories: of hard, tropical rain beating a pulsing, bass, asyncopation on a galvanized steel roof; of goalkeeping on a flooding field, where you could not even see the half-line, much less the other goal; of hiking the calmed streets of New York, dry and warm with the hood up on a bright orange raincoat.

The rain isolates and quiets the world. Though I enjoy our immersion trips, and really believe they are one of the best mediums for learning, I savor those few minutes of solitude each morning. Before the cacophony to come.

Interning at the Muddle

One of my students, Ms. Piper Ziebarth, had the audacity to agree with me, enthusiastically, when I mentioned that my writing could do with a little editing. She also had the temerity to call one of my more artistically designed paragraphs, “boring.”

So I offered her the chance to intern at the Muddle as an editor and reviewer.

This week, most of my students are off seeing a little of what it’s like to have a real job. Apart from getting them out of my hair for a week, the internships are intended to allow them to build some self-esteem by contributing to society (internships must be unpaid), practice speaking and acting in formal situations, and exercise the most interesting and challenging aspect of learning by applying their knowledge in new areas.

Piper's hand at the wheel.

I offered Piper the chance to work with me because she’s a gifted writer, from whom I would do well to learn. Unlike my own, her writing is clear and concise, with strong emotional subtexts that draw the reader in. She’s also internalized the lesson that the revision process is essential, so her work benefits from a strong, critical eye.

Piper’s also one of my more prolific student bloggers.

I’ve not worked at a newspaper or magazine, so I’m only vaguely familiar with their traditional editing process. I have seen both sides of the scientific peer-review process, but there, the focus is more on making sure the end result is scientifically accurate. There, the use of scientific jargon is essential for clarity when communicating among scientists working in a specialized field. While I greatly enjoy the freedom of blogging, I often find myself being pulled into that careful style of scientific writing.

Hopefully, Ms. Ziebarth can help pull me out of it.

Over the next week, my challenge will be to not mention schoolwork, and all the other things we have going on in the classroom, and let Ms. Ziebarth focus on editing and revising.

Ultimately, what shows up on the blog is my responsibility, and I can be quite stubborn. But, hopefully, I’m old enough to learn how to use a good editor and reviewer well.

And Poetry Soothes the Savage Beast

Poetry can be disjointed, illogical and irrational. Sam Tanenhaus argues that that is why poetry helps us make sense of catastrophes and disasters.

One of the enduring paradoxes of great apocalyptic writing is that it consoles even as it alarms.

This has been, in fact, one of the enduring “social” functions of literature — specifically, of poetry. Narrative prose is less well suited to the task. This isn’t surprising: narrative implies continuity and order — events that flow forth in comprehensible sequence, driven by motive forces of cause and effect. …

But catastrophe defies logic. It faces us with disruption and discontinuity, with the breakdown of order. The same can often be said of poetry itself. It operates outside the realm of “logic.” Rather, it obeys the logic of dreams, of the unconscious. This is especially the case with lyric poetry, with its suggestion of vision and prophecy.

— Tanenhaus (2011): The Poetry of Catastrophe, on the New York Times’ Arts Beat Blog.

Andrew Sullivan, on the Daily Dish, highlights W. B. Yeat’s “The Second Coming,” as being quite apt to the topic. It was written just after World War I (Poem of the Week).

Turning and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world,
The blood-dimmed tide is loosed, and everywhere
The ceremony of innocence is drowned;
The best lack all conviction, while the worst
Are full of passionate intensity.

Surely some revelation is at hand;
Surely the Second Coming is at hand.
The Second Coming! Hardly are those words out
When a vast image out of Spiritus Mundi
Troubles my sight: somewhere in sands of the desert
A shape with lion body and the head of a man,
A gaze blank and pitiless as the sun,
Is moving its slow thighs, while all about it
Reel shadows of the indignant desert birds.
The darkness drops again; but now I know
That twenty centuries of stony sleep
Were vexed to nightmare by a rocking cradle,
And what rough beast, its hour come round at last,
Slouches towards Bethlehem to be born?

— Yeats (1919): The Second Coming, (via Poets.org).

Drilling Through to the Mantle

Between 6 and 25 km thick, the Earth’s crust is an excruciatingly thin skin on a 6400 km globe. Yet even drilling to the bottom of the crust would require a remarkable feat of engineering. Some geologists want to try.

NPR’s Science Friday interviews Damon Teagle, one of the architects of the project. They want to drill in the ocean because oceanic crust is thinner than continental crust (on the other hand, it’s denser too, which is why it subducts).

Using different types of chocolate covered candy, they also have this wonderful video of the basalts, sheeted dykes and gabbros that make up the crust.

Coon Creek Immersion: Visiting the Cretaceous

70 million year old shell and its imprint collected at the Coon Creek Science Center.

Just got back from our immersion trip to collect Cretaceous fossils at the Coon Creek Science Center, and hiking in Natchez Trace State Park.

It was an excellent trip. Despite the cold, Pat Broadbent did her usual, excellent job explaining the geology of Coon Creek and showing us how to collect and preserve some wonderful specimens. Back at the cabins, we looked at some of the microfossils from the Coon Creek sediments (and some other microscopic crystals); similar fossils can tell us a lot about the Earth’s past climate.

Back at the Park, we traced a streamline from the watershed divide to its marshy estuary, and cooked an excellent seafood dinner as we learned about the major organ systems.

Dinner was delicious.

Our trip was not without difficulties, however. The group learned a bit more about self-regulation, governance and the balance of powers, as a consequence of “The Great Brownie Incident,” and the, “P.E. Fiasco.”

We were also fairly well cut off from the “cloud”: no internet, and you could only get cell reception if you were standing in the middle of the road in just the right spot in front of Cabin #3.

But more on these later. I have some sleep to catch up on.


View Coon Creek Immersion in a larger map

Life in Four Domains

The four domains of life, according to Boyer et al. (2010).

This wonderful, impressionistic image shows representatives of the three domains of life and large viruses, the proposed fourth.

This figure represents the living species in the four small pictures according to the current classification of organisms: eukaryotes (represented by yellow cell), bacteria (represented by green cell), Archaea (represented by blue cell) and viruses (represented by magenta colored Mimivirus).

Boyer et al. (2010): Boyer M, Madoui M-A, Gimenez G, La Scola B, Raoult D (2010) Phylogenetic and Phyletic Studies of Informational Genes in Genomes Highlight Existence of a 4th Domain of Life Including Giant Viruses. PLoS ONE 5(12): e15530. doi:10.1371/journal.pone.0015530

Carl Zimmer has an excellent piece in Discover Magazine that summarizes the research, and sets out the new tree of life. Particularly important, is the fact that viruses can transfer genes with each other. The other domains tend to mix their genes during reproduction.

We are Stardust: Supernovas and the Heavy Elements

Expanding globe of debris from the explosion of Tycho's Star. Tycho Brahe observed the star as it went supernova about 540 years ago. The red is the debris, the stardust, created by the explosion. Image from NASA.

We could have been talking about the nuclear meltdowns in Japan, but I’m not sure. Our conversations tend to wander. I remember trying to explain where the carbon atoms, that are so essential for life, came from. It’s been a while since we saw this topic, so I figured it wouldn’t hurt to go it over again. And then I found this wonderful image of the Tycho supernova from the Chandra space telescope. Supernovas are where the heaviest atoms are formed.

In the beginning … the big bang created just the smallest elements, hydrogen and helium. But even these tiny things have gravity, so they pull each other together until there’s so much stuff that the pressure at the center of the clump is enough to fuse hydrogen atoms together.

Now fusion is easy to confuse with chemical bonding that occurs around us every day. After all, the hydrogen in the atmosphere is usually in the form of H2, which is two hydrogen atoms bonding together by shared electrons.

With fusion, on the other hand, the single protons that make up the nuclei of the hydrogen atoms are pushed together to create a bigger atom, helium. I say pushed together, because it takes a lot of pressure to fuse atomic nuclei. And it also releases a lot of energy. Notice all that heat and radiation that comes from the Sun? All that energy was created by the fusion of hydrogen atoms; the smallest element, hydrogen, fuels the stars.

Fusion of two hydrogen atoms to create helium, compared the chemical bonding of hydrogen atoms to produce hydrogen gas (H2). The nutrons are left out for clarity.

The huge amounts of energy released by fusion makes fusion power one of the holy grails of nuclear energy research. If we were able to create and control self-sustaining fusion reactions, just like what happens in the Sun, we would have a source of tremendous energy. There is a lot of research in this area. Some people have figured out how to build fusion reactors in their basements, but these use a lot more energy than they produce so they’re not very useful as a power plant (Barth, 2010). The ITER reactor, currently being built in France, aims to be the first to produce more electricity than it uses.

Now back to the stars. Hydrogen atoms fuse to form helium, but it takes a lot more pressure to create larger atoms: carbon has six protons, nitrogen seven, and oxygen eight. These elements are essential for life (as we know it). The only time stellar forces are great enough to produce these are when stars explode; an exploding star is said to have gone nova. Bigger atoms, like iron (26 protons), gold (79 protons), and uranium (92 protons) need even greater forces, forces that only occur when the largest stars go supernova.

DNA. (from Wikipedia)

So if these elements are only produced in novae and supernovae, how did they get to Earth? How did they get into your DNA?

Well when stars explode, a lot of these newly formed elements are blasted off into space. It’s a sort of cosmic dust. We could even call it stardust. It’s matter, just like the hydrogen and helium from the big bang, only bigger, which means they have more mass, which means they have more gravity.

Formation of the solar system (model).

The gravity pulls the stardust together with the hydrogen and helium sill floating around in space (there’s a lot of it), to form new stars, and, now that there are the larger elements to create them, rocks, asteroids, and planets.

So, if you think about it, some stars needed to have been formed, lived their lives (which consists of fusing hydrogen atoms until they run out), and exploded to create the matter that makes up the planets in our solar system and the calcium in our bones, the sodium in our blood, and the carbon in our DNA.

Notes:

1. Lots of information about Tycho’s Star on SolStation.com.