To teach effectively, you need to speak the same language

An interesting research project has shown that the same parts of the brain light up when you’re telling a story as when you’re listening to the story. So much so, that you begin to anticipate and parts of the your brain actually light up before the same parts in the storyteller’s. And the greater the synchronization, the greater the recall of the story.

The researchers found considerable synchronization between Silbert’s brain-activation patterns and those of her listeners as the story unfolded. For example, as Silbert spoke about her prom experience, the same areas lit up in her brain as in the brains of her listeners. In most brain regions, the activation pattern in the listeners’ brains came a few seconds after that seen in Silbert’s brain. But a few brain areas, including one in the frontal lobe, actually lit up before Silbert’s, perhaps representing listeners’ anticipating what she was going to say next, the team says. – Balter, 2010

That’s fascinating enough, but the control of their experiment was to have listeners listen to a story in a language they did not know. There was not the same synchronization. This means, if we extrapolate a little, that the amount of language comprehension determines how much you learn from a conversation, or hearing a story, or listening to a lecture, or even for understanding a set of oral instructions.

So if you want students to remember something you need to speak in their language. Language here refers not just to English versus Russian or whatever, but speaking using common idioms that the student is, like, you know, familiar with.

What Video Games Have to Teach Us about Learning and Literacy, by James Paul Gee

James Paul Gee has written a lot about this type of communication, and what it means for learning. He argues that meaning is situated, that is, how we understand something that is said to us depends a lot on our previous history and experiences. The most effective communication only really occurs within communities that have shared the same, or similar, experiences.

We are as teachers, of course, trying to expand student’s ability to use language, and introduce them to the language of different communities. But we should probably pay attention to how we speak in different contexts, and speak in their language when we want them to really remember something.

It all depends on your point of view

Over the winter, we read Brian Swimme’s The Hidden Heart of the Cosmos as part of the HMC Montessori Training Program. Swimme is one of those people trying to reconcile science and religion, or at least some type of spirituality.

He argues that crass commercialism, embodied by the consumer culture and a lot of television that is excrescent and dis-empowering, has replaced the spirituality that our ancestors sought in the dark, quiet reaches of the night. Then they had the time to contemplate the meaning of life and their place and even purpose in the universe. Now we try to respond to a rapidly changing world with no time to consider the fundamental questions.

I tend to be a bit skeptical about just how useful it is to examine the intersection of the sacred and the scientific. The scientific perspective is a powerful way of looking at the world. Spirituality seems to be one of those fundamental needs of human beings. I’ve never found it difficult to see the wonder in the natural world around me (which is why things like texture photography fascinate me). But when we try to describe the natural world in terms of religion and spirituality, I get a bit uncomfortable. When you’re treading the boundary between what we can observe objectively and what we feel subjectively, it’s all to easy to slip between one and the other. To stretch the scientific truth to accommodate the poetic language or metaphor. And so, it’s the little things that end up bugging me to no end.

Copernicus revolutionized the way western civilization viewed the world and itself, Swimme notes. The Earth was no longer at the center of the universe. The Sun did not revolve around us, we revolved around it. So when you see the Sun going down at sunset, it’s not really going down, the Earth is turning away. Except that it is and it isn’t. If the Earth is rotating you away from the Sun, or if the Sun in going down past the horizon, is just a matter of your point of view.

If you want to describe the motion of the planets, the easiest model to construct is one where the Sun is the stationary reference point at the center of the solar system. But, if you were a glutton for punishment, you could write the equations of motion such that the you were the stationary reference point and everything else moved relative to you. It’s a bit like thinking about yourself on a boat floating down a stream. To an observer sitting on the bank you are moving downstream, but to you, the guy on the bank is moving and you’re staying in the same place.

So I get a little agitated when Swimme points out how remarkable it is to think about the fact that we occupy such a small place in such a large universe. He argues that it should broaden your perspective on the universe, and open your mind to larger questions. But I find it just as remarkable, or perhaps even a little more so, to consider the world where I am not moving, and everything else is spinning in some ridiculously complicated dance around me.

I think of Swimme at times when I’m trying to model solute transport through a fluid. Should I try to follow the motion of individual particles with the fluid. Should I take the broader view of the flow through the system. Or should I try to mix the two approaches. Either way, the math should give the same result, since I’m just trying to describe the same thing from different point of view (of course the problem is in how compatible the different approaches are to being programmed).

I know I’m missing the main point of the Hidden Heart of the Cosmos here because of my own hang-ups, so I’ll post an excellent video interview of Brian Swimme by Bob Wright, the author of Nonzero, so he can better explain himself. (If you can’t get the video to play, you can read the transcript.)

Approximating reality

The world is ridiculously complicated. We construct models to represent what we see and think we understand. Simple models of complex phenomena, and we’re happy when our models represent the most important patterns.

We would, of course, often like to understand the details, so we add more detail to our models. And our models get closer to reality. Yet as our models represent the world in more and more detail they themselves become more and more complex. All the simple parts of the models start to interact in increasingly unexpected ways, until it becomes almost as difficult to interpret the model as it is to understand the real world.

It’s a good thing we see beauty in complexity.

Texture photography

I’ve always had a predilection for texture photography, despite the fact that I’ve only just now come to realize that there is actually a term for it. The changes in perspective you get from looking at things at different scales continues to fascinate. Texture photography focuses on the small but looking at big things from far away can have a similar effect.

Martian dunes. Image from NASA.

What is life and what is human?

Life has four needs, six characteristics and sixteen patterns, but things only get really interesting with viruses that straddle the line between life and non-life. You can run into similar problems when you ask the question of what makes us human.

Both these questions come up in stories like Pinocchio, and any number of robot books, such as John Sladek’s Roderick. Probably because good books go a lot farther in describing characters rather than appearances, you often start with the question, are they sentient and then backtrack to the question of if they’re alive or not.

Interestingly, many of my students equate the question, are they sentient, with the query, are they human? (A fascinating result given the propensity of humanity to divide into groups based on looks.) Which gives rise to the interesting conundrum, can something/someone be “human” and still not alive? We’ve had some fascinating discussions around that question too.

A great place to encounter these issues is in Mary Shelly’s novel Frankenstein, which also nicely ties-in with the science curriculum since you will probably find it useful to draw out the Frankenstein family tree to keep track of the story. In addition, the historical setting of the book relates to social world issues as the book describes life in the early 19th century, and you realize that the issue of our relationship with technology and science was coming up 200 years ago.

A lighter variant on Frankenstein is Terry Pratchett’s Feet of Clay. It’s a story about golums who are powered only by the words in their head. Unlike Asimov’s three rules of robotics the words are not literal instructions like the programmer’s code, they can be much more metaphorical, like a receipt. Yet, in the end, many of the same questions about life and humanity arise.

Earth Ecology and Terraforming Mars

I’ve been thinking about science fiction, like Mirable and The Chrysalids that tie into the Natural World (science) curriculum. While I’ve not read Kim Stanley Robinson’s Mars triology, Red Mars, Blue Mars and Green Mars, they’ve won a number of awards and I’ve heard good things about them.

I’m looking for books that address global ecology, so stories about terraforming Mars would seem to fit. The Mars triology books are also supposed to be fairly rigorous and consistent about the science, something I look for in good science fiction. There are also some good articles discussing the science that can be used for supporting information, like this one by Margarita Miranova (2008) about the actual feasibility of terraforming Mars.

Feature identified by students from Evergreen Middle School. Image from NASA.

Given Mars’ proximity and the fact that space agencies have orbiting satellites and ground rovers makes the idea of colonizing Mars an intriguing one for the more adventurous adolescents. In fact, the recent news that 7th graders discovered a new feature on Mars’ surface might also inspire some interest. The 7th graders’ project was part of the Mars Student Imaging Program (MSIP), which might also be of interest. MSIP actually allows students to use the camera on board the Mars Odyssey satellite, by identifying locations for detailed images.

Tree of Life Project

Tree of Life web project.

The Tree of Life web project is a growing online collaborative project to:

to contain a page with pictures, text, and other information for every species and for each group of organisms, living or extinct.

Direwolf distribution in the U.S. from Faunmap.

It’s a great starting point for looking at the tree of life because each page has links to a wealth of online resources. One of the links on the Mammalia page, for example, is to Faunmap, an online database that produces maps of where different modern and extinct mammalian species can be found in the United States.

All the pages on the Tree of Life website are linked by the branches of the tree of life. The Class Mammalia links up to its parent Therapsida and down to the its Orders such as Monotremata (one of my favorites) and Eutheria, the placenta mammals.

The site is authored by professional scientists and science educators so has that credibility. Most of the images also allow free, non-commercial use. Thanks to Anna C. for the link.