Fractured thinking – How the internet affects how you think

While many people say multitasking makes them more productive, research shows otherwise. Heavy multitaskers actually have more trouble focusing and shutting out irrelevant information, scientists say, and they experience more stress.

And scientists are discovering that even after the multitasking ends, fractured thinking and lack of focus persist. In other words, this is also your brain off computers. Richtel, 2010

Matt Richtel has an intriguing article in the New York Times on how multitasking on computers is affecting the way people think. I don’t have a whole lot of time to get into it is a well resourced article citing work from researchers such as Clifford Nass, Eyal Ophir and Melina Uncapher at Stanford, Steven Yantis at Johns Hopkins, Daphne Bavelier at the University of Rochester, Gary Small at UCLA and Adam Gazzaley at UCSF.

Other choice quotes:

[Multi-taskers] had trouble filtering out … the irrelevant information.

multitaskers tended to search for new information rather than accept a reward for putting older, more valuable information to work.

that people interrupted by e-mail reported significantly increased stress compared with those left to focus. Stress hormones have been shown to reduce short-term memory

Finally, the article ends with a thought about how technology use affects our ability to relate to others.

Mr. Nass at Stanford thinks the ultimate risk of heavy technology use is that it diminishes empathy by limiting how much people engage with one another, even in the same room.

“The way we become more human is by paying attention to each other,” he said. “It shows how much you care.”

That empathy, Mr. Nass said, is essential to the human condition. “We are at an inflection point,” he said. “A significant fraction of people’s experiences are now fragmented.”

This work of course ties in with Nicholas Carr’s thesis that asks the question, “Is Google Making Us Stupid“. Carr’s book, “The Shallows” takes up the argument that we should spend less time online. While I tend to agree with Carr that we would benefit from more time offline, I really think his explanation that the invention of the press, and cheap books, lead to more deeper concentration (and that’s what we’re loosing now) needs a lot more evidence to back it up.

Playing with real economic data (FRED)

Long term unemployment

The Federal Reserve’s data website produces graphs using the same economic data that the Federal Reserve uses to make decisions about the nation’s economy. The above graph, showing long term unemployment in the U.S., combines the unemployment numbers based on how long people have been unemployed from four data series (<5 weeks, 5-14 weeks, >= 15 weeks, >27 weeks). You see howthe site makes the combinations you want, and produces the graph.

Scientists tracking oil plumes

Filter after 10L of plume water was passed through it -- visible oil! (from Joye, 2010)

As oil continues to leak from the damaged well in the Gulf of Mexico and the surface slick is affecting more and more of the coastline, scientists now using research vessels to track the underwater plumes spreading at depth throughout the gulf.

Dissolved oxygen, CDOM and beam attenuation with depth (from Joye, 2010).

Satellite imagery from NASA only shows what’s at the surface. To find the underwater plumes, researchers on boats lower instruments on cables that measure the chemistry of the water. Certain chemicals, like colored dissolved organic matter (CDOM) are produced when there is a lot of oil in the water.

Dr. Samantha Joye, from the University of Georgia, is the lead scientist on one such vessel. She started the Gulf Oil Blog where she describes her ongoing work in the gulf and answers readers questions. It is an excellent resource. A great demonstration of science in action, working on a practical problem but using techniques and methods developed over time for answering more abstract questions.

Oil in the wake of a ship (from Joye, 2010)

St. Louis overview

View of St. Louis from the top of the Arch.

I had not particularly wanted to go up into the St. Louis Arch myself, but the students really wanted to and we had a little time to spare after the Science Museum. So I grabbed tickets for the last tram to the top, and I’m glad I did. Looking down on the city and river from above you could, in an almost tactile way, reconcile the geographic elements with the history that we’d talked so much about at Anheuser-Busch.

Eads Bridge across the Mississipi River in St. Louis.

Standing in line, waiting for the tram to the top, we were treated to a short documentary on the Eads Bridge, the first across the Mississippi in St. Louis. The video stressed the importance of the bridge in allowing the city to become the gateway for westward expansion.

The tram arrived and small rectangular doors opened up to reveal tiny escape pods fit for a spaceship. Five of us squeezed in, fortunately we were all friendly. The distinct possibility of claustrophobia tinged the air. Three minutes 47 seconds later we reached the top. Forty-five degree rain was pouring down outside. The wind was so strong you could, if you held still and waited for it, feel a slight sway in the Arch itself.

Barges in the distance.
Grain silos and transhipment docks.

Looking east we saw the mighty Mississippi. Not quite so mighty as it is in Memphis, which is downstream of the confluence with the Ohio River, but enormous nonetheless. On the river, huge barges carried freight cars with unknown cargo south toward New Orleans. Just below, an helicopter sat on an helipad barge waiting for an emergency call. Directly across the water, on the east bank, enormous silos with their own docks waited to load barges with grain collected from across the mid-west.

It was still pouring when we left the Arch, and the rain continued on even during dinner. But leaving the restaurant, heading back to the hotel, the setting sun to the west, refracted through raindrops over the river, created one of nature’s own ephemeral monuments. A poignant reminder that forty-five, or even one hundred and forty-five years are but a moment in the deep span of geologic time.

Gardening in small spaces – self-watering containers

The above video, on how to build a self-watering container (this type is also known as a Global Buckets), seems extremely useful for the urban gardener, especially in Memphis where even gardening in the ground is difficult because of the poor, loessic soil. I’ve found container gardening (in cat litter buckets) to be much more effective, even though evaporation is a major issue with our hot summers. So I very much like the idea of self-watering containers.

These containers may also be an excellent complement to our greenhouse, because we can avoid having to water every day. If we got the right containers, or decorated them nicely enough, we might be able to sell these with our vegetables at the end-of-year plant sale.

The related videos on YouTube have a variety of other self-watering container variants. This version, with water jugs and a single large tub, also seems like it might be effective. There are also nice instructional video on how siphons work, as an easier way of watering a series of buckets. The Global Buckets project is a fascinating effort to help reduce malnutrition with simple materials.

Segway lessons

From playing with robots we tried an actual application of robotics. We had the Segways 101 course at the St. Louis Science Center.

The lesson itself was fun, with an entertaining video of people falling off Segways. They also had a little obstacle course to let you try doing all of the things the video told you not to do (but most of it was for the more advanced class).

Afterward, we discussed the fact that this too was robotics and a pretty advanced application at that. We did not talk much about how the Segways were supposed to revolutionize urban transportation but students did recognize the fact that aesthetics were a major impediment to their broader adoption.

The price was a bit steep however, and I’m a little conflicted about if it was worth it.

Lego Mindstorms

I’ve been curious about the Lego Mindstorms robotic systems for a while now, and I had my first chance to try them at the St. Louis Science Center.

The kits come with a micro-controller, a few motors and some sensors. While there are quite a number of ways of assembling these to make robots, the ones at the science center were pre-built except that you could just plug in a bulldozer or sweeper attachment (and a head which was purely decorative). This limited the degrees of freedom to three, which made it easier to program something useful in the hour we had with the robots.

The programming is very basic. There are two sets of instructions, one to control the movement of the robot in general, and one to control its response when the sensor detected a change in the environment. The objective of the science center’s game was to clear off a set of objects from a white rectangle within five minutes.

You could tell the robot to move forward, back or rotate while it’s on the board and to activate its sweeper or shovel. So a full program could have just five elements; general: lower shovel –> move forward –> rotate; sensor: move backward –> rotate. With these strict limitations, the programming interface is also very simple; you plug in blocks with each instruction in the series for either the general movement or the sensor reaction. With all this simplification, I’m not sure just how much the students learned about programming from our short session.

The full kit from Lego offers more freedom to design robots and thus more flexibility with the programming interface so with a little thought it could be easily integrated into the curriculum. At about $300 each the system is a bit pricy, we’d probably need to get one kit for each small group of 3-4 kids. They would probably be worth it however if we used them more than just once.

I’ve been playing with the Basic Stamp micro-controller for a while, and while it offers almost infinite flexibility, making it more useful for practical applications, it does not provide the immediate gratification of the robots, and the ease of assembly to make it the better tool for introducing robotics to middle schoolers. I still, however, tend to favor practical applications, so perhaps I can persuade a student to do an advanced project to build an automatic window for the greenhouse.

The session at the Science Center was worthwhile. All of the students seemed to enjoy it. It provided a nice integration of the mechanics and electronics we’ve been learning about all year, and a glimpse of where technology is taking us in the future.