Spray Paint Planets

One of my students really got into spray-paint art this year, especially planets. By the time she was done she’d completed over two dozen pieces; some on paper, some on wood, some on clear plastic or acetate, and some of which we backlit with LED’s. Her paintings are all over the Makerspace, which generates a lot of interest.

However, now that this student has graduated, we’ve had to find another way to teach the process. I’m using the above video as a quick introduction to the process (note: it starts at 36 seconds because the author uses a single rude word in her preamble).

2020: Lofi Background Music/Art

One of my favorite pieces of art from this year, perhaps because it captures so much of the 2020 experience, and speaks to the way we try to cope during a pandemic.

Having to work from home for most of the first half of the year prompted the persuit of some mellow, non-distracting background music. This lead to the discovery of lofi hip hop channels on YouTube. One of the most popular of which (on the ChilledCow channels) has a simple lofi study girl animation. This image seems to have its roots in the wonderful, Japanese, Studo Ghibli movie Whisper of the Heart.

The image evolved into a meme, with the girl being relocated to different parts of the world–Bored Panda has a number of examples.

Switched on Pop has an excellent podcast episode on the Lofi Music phenomenon called Why lo-fi is the perfect background music. It delves into the history and economics, but focuses on the musical qualities–beats, semi-random elements, etc–that make it well situated for background music.

Apart from the visual and contextual appeal of the Lofi Cali Girl image at the top of this post, the biography of the artist is quite interesting in how it encapsulates an internet-era artistic trajectory. In addition to traditional drawing classes and a BA in Art she credits:

What helped me the most was actually being part of the deviantART community where I learned from other artists by observing their works, and the free tutorials they provided.

Yuumei, FAQ

Her extensive use of them has lead her to create and publish her own free tutorials.

Butterflies in Polar Coordinates

A butterfly outline drawn from a trigonometric function in polar coordinates.
A butterfly outline drawn from a trigonometric function in polar coordinates.

I was looking for mathematical functions I could use to shape guitar bodies, and I came across Hubpages’ user calculus-geometry‘s beautiful page on how to generate butterfly outlines using functions in polar coordinates.

The butterfly above was generated using the function:

r(θ) = 12 – sin(θ) + 2 sin(3θ) + 2 sin(5θ) – sin(7θ) + 3 cos(2θ) – 2 cos(4θ)

The code I used (using VPython) is:

from visual import *

''' the main function '''
def r(theta):
    #r = 1+cos(theta)
    
    #Archimides' sprial
    #r = 0.5*(theta) 
    
    #heart: http://jwilson.coe.uga.edu/EMT669/Essay.ideas/Heart/Hearts.html
    #r = 5*sin(theta) - sin(5*theta)
    
    #butterfly: http://calculus-geometry.hubpages.com/hub/Butterfly-Curves-in-Polar-Coordinates-on-a-Graphing-Calculator
    #r = 8-sin(theta)+2*sin(3*theta)+2*sin(5*theta)-sin(7*theta)+3*cos(2*theta)-2*cos(4*theta)
    r = 12-sin(theta)+2*sin(3*theta)+2*sin(5*theta)-sin(7*theta)+3*cos(2*theta)-2*cos(4*theta)

    return r

'''convert to rectangular coordinates'''
def xy(r, theta):
    x = r * cos(theta)
    y = r * sin(theta)
    return vector(x, y)


path = curve(color=color.green, radius=.2)


theta = 0.0

print pi, theta, r(theta) , xy(r(theta), theta)

while theta <= 2*pi:
    rate(100)
    theta += 0.01
    path.append(pos=xy(r(theta), theta))
    


Sculpting the Guitar

Sanding and sculpting the guitar bodies was loud, dusty and took a while.

Sculpting the guitar body.
Sculpting the guitar body.

The shape of an electric guitar’s body does not matter that much–they’ve even been made out of 2×4 (inches) pieces of wood–, so there’s a lot of room for creativity when sculpting your guitar’s shape. There’s a little more restriction for the guitar bodies from the guitarbuilding project because they come with cutouts for the electronics that have to be avoided. However, your main limitation is time.

Even with the big rasp, sculpting is not easy, especially since some of the types of wood used for the bodies can be quite hard. The darker strip in mine was particularly difficult.

I chose to carve out two parts of the body. First, it’s a lot more comfortable if the bit where the guitar tucks into your ribs is curved and smoothed; second, shaving down the area where your strumming forearm comes across the guitar makes the strings easier to get to.

Once the sculpting was done, I used a router to round all the other edges.

Routing the edges with a table router.
Routing the edges with a table router.

Return to 3rd Degree

Glass tile using the DNA Writer codon translation table.

Last weekend, I took the Glass Art Sampler class at the Third Degree Glass Factory, and got to try my hand at making a paperweight, a glass tile, and a few beads. It was awesome.

I’d had the chance to make a paperweight when my Lamplighter class had visited St. Louis a couple years ago, so I had a general idea of some of the possibilities. This time, however, I had DNA sequences on the brain, and went in with a bit of a theme in mind.

The tiles were the easiest because all you need to learn how to do was cut glass — by scoring it and using a little pliers like device to break it along the score — and then arrange the tiles of colored and clear glass on a tile. The arrangement was placed in a flat kiln, and then a day or so later, you tile would be all melted together. Pretty simple for a beginner.

My glass tile arrangement sitting in the kiln.

There is, of course, a bit more to it than that. The way the glass is stacked can be used to create floating effects; some colors will react when melted in the kiln to give different colors; care needs to be taken to manage where bubbles show up in the cooled glass; among other things.

Since it’s easiest to make straight edged cuts in glass, I made four sets of square colored tiles — yellow, red, blue, and green — to make a nucleotide sequence based off the DNA Writer translation table (with the start and stop codons added in).


Paperweight

I tried something similar when making the paperweight.

A blob of molten glass.

Usually, you start with a blob of molten, clear glass on the end of a metal rod, and dip it into trays of colored glass shards that stick to the molten glass. You can then pull and twist the viscous glass with a large pair of tweezers to blend the colors and make pretty patterns. The twisted glass is then pushed into a blob at the end of the rod, and the whole thing encased in more clear glass.

Twisting the glass.

Instead, I wanted to create a discernible pattern of colors to create a multi-colored helix of molten phenocryst-like blobs in the clear glass. I really wasn’t sure how to make it work. I though perhaps I could dip the initial glass blob into a pattern of shards and then pull it out once while twisting to get the spiral pattern. Our instructor was patient as I tried to explain my ultimate goal, and he came up with a more subtle method for making the spiral.

A pattern of colored glass chips.

I laid out the short pattern of colored glass shards and carefully dipped the initial blob of clear glass into it. All the shards stuck, which was good. Then instead of pulling with tweezers, the instructor helped my gently roll the blob of glass along a metal surface at a slight downward angle. Contact with the metal cooled the tip of the glass faster than rest of the blob causing the whole thing to twist just nicely. After smoothing things with a block we covered it with more clear glass (and smoothed again), and were done.

One week later:

Half a double helix encased in glass.

Working with big blobs of extremely hot glass is quite challenging, so I couldn’t replicate this on my own at the moment. I may have to take another class.

Glass Beads

The instructor melts a yellow glass rod in the flame and drops the molten glass onto a thin metal rod to create a bead.

I would feel comfortable making glass beads after the one class, but mastering the art is going to take a lot of practice. The flame — created from a mix of fuel gas (propane I think) and oxygen — is quite hot, and it takes some expertise to be able to melt the glass and twirl it onto the rods to make a nice round bead. The trickiest part, however, is making little colored dots to decorate the bead. You need to melt small bits of glass for the dots, then move the bead through the flame to warm it up enough so the dot will stick to the bead while not melting the bead too much. Then you pass the bead through the flame again to set the dot. If the bead or the dot is too cool when they’re put together the dots will pop off. I had a lot of popping dots.

I was not able to get my nucleotide sequence onto a bead in the time I had, but I did at least get to make a couple beads.