Gypsum on Mars

Suspected gypsum vein on Mars. Image taken by the Opportunity Rover. Image credit: NASA/JPL-Caltech/Cornell/ASU.

NASA thinks their rover has found veins of gypsum on Mars. If they have, it will be an excellent indication that there was once standing water on Mars — gypsum is usually precipitated in evaporating lakes — and will excite the search for life on Mars.

What gypsum veins on Earth look like: white gypsum veins from Somerset, UK. Image by Ashley Dace. (via Wikipedia)

Mushroom Hunting: A Biological Survey of the Campus

A selection of (as yet) unidentified fungi from the school campus in eastern Missouri.

It’s remarkable how interest drives motivation and motivation gets things done. We’re in an intercession right now and ten students signed up with me to do a biological survey of the school grounds. With a small creek on one side, and a fairly tall ridge on the other, the school has a nice variety of biomes.

Now, to be clear, I’m not a biologist. In fact, that’s why I was so interested in the biological survey. Everything in this area is new to me. But it also means that I approached this project as a novice. Mrs. E. was nice enough to lend me a veritable library of reference books, covering everything from the wildflowers of Missouri to the amphibians of the mid-West, but she was off teaching another batch of students how to cook, so I was on my own.

All the students in the group were volunteers, but a fair chunk of them just wanted to get outside, even though it was overcast and threatening rain. To get the students more engaged I let them choose either the environment they’d like to survey, or the types of organisms they’d like to specialize in. I also gave them the option of working independently or in pairs.

The Creek

The Creek team collected a pair of amphibians. They were documented, photographed, and then released.

One pair choose to canvas the small creek that runs past the school. I’d set a minnow trap the night before to collect fish for our tank, and they hauled that in. The stream water was somewhere around 14°C, while our tank was closer to 23°C, so, to prevent the fish from going into thermal shock, we left the minnows in a bucket so it could, slowly, thermally equilibrate. They monitored the temperature change with time, and I think I’ll use their data in my physics and calculus classes.

They also collected a pair of amphibians, which we photographed and then released. They tried to catch some crawfish, but were unsuccessful, despite the fact that one of them searched for “how to catch crawfish” on their phone; unfortunately they did not have time to follow the detailed video instructions they found on the web that described, in detail, how to build a crawfish trap.

Trees and Shrubs

Collected leaf specimens PL01 and PL02.

Because of the incipient rain, we did not take our reference books out with us. Instead, we collected leaves and sketched bark patterns so we could do our floral identification later.

Berries from an (as yet) unidentified bush.

A number of students really got into that. So we have a fairly large collection, though almost all of which come from the riparian area that bounds the creek. I would have liked a broader survey, but we only had so much time.

Unidentified wildflowers.

Mushrooms

Part of our mushroom collection.

More than a few students were interested in looking for mushrooms – even one of the tree specialists came back a mushroom sample – but one student really got into it, canvasing all the dead logs from the creek, through the meadow, and up past the treeline on the side of the hill.

The underside of this fungi looks a bit like a brain coral.

And we now have quite the collection of fungi. They’re as yet unidentified, but they’re elegant bits of biota. Our fungi specialist is interested in coming back in and sketching them.

Identification

We had two hours. Not even enough time to do a complete survey, so we barely got started on identification. It will probably go slowly.

While our methods were not systematic, and our coverage of the grounds incomplete, this exercise was a good start to cataloging the local biology. I don’t know if I’ll be able to expand on the survey any time soon, but this type of project would be a great for middle school science next year when we focus more on the biological sciences, particularly on taxonomy.

Milking Goats

Learning how to milk goats.

Part of the afternoon chores at the Heifer Ranch was milking the goats. It was not something required of the students, but since our barn was located right next to the goats’ milking barn, a lot of them volunteered to try it out.

Carefully milking a goat.

Most used the somewhat dainty, one handed technique, and I’ll confess I was among that group, but a few students (see first image) really got into it.

A good producing goat (doe) can produce about 3 quarts per day (McNulty et al., 1997).

After milking, the goats’ teats are dipped in iodine solution (25 ppm recommended by McNulty et al., 1997) to kill any germs and prevent infection.

Sanitizing with iodine solution.

As for the green splotches on the backs of the goats. On our first morning at the Heifer Ranch we had walked past a paddock with about half a dozen goats. A student noticed the green and asked why. Fortunately, we had a guide to explain a little about the basics of animal husbandry – apparently, the marks indicate which goats are likely to be pregnant.

Tarantulas near the Global Village

Tarantula encountered on the path between the Zambia and Thailand (at the Heifer International Global Village).

We ran into this young tarantula on the path between the Zambian and Thai houses in Heifer International’s global village in Arkansas. We were taking the tour, and while this young fellow (probably male according to Zaq our guide) was not part of the regular schedule, we were lucky to find him. While tarantulas are venomous (mildly), and some have stinging hairs, their bites are about as painful as a bee sting (Warriner, 2011). But they are large, and, since most of us have a visceral fear of large arachnids, they’re pretty awesome to encounter (charismatic megafauna – is the term I like to use).

Zaq branished the wooden Spoon of Silence and shouted, "Hey. Take a look at this."

Tarantulas arrived in Arkansas about 8000 years ago (Warriner, 2011) at the height of the warmer, drier climate that followed the melting of the great North American glaciers about 10,000 years ago. The climate of Arkansas has gotten a bit wetter since then, but the spiders survive in isolated, drier upland areas (according to the Arkansas Tarantula Survey), like bits of grassland surrounded by forest. Pretty much like the grassy slope between the Thai and Zambian houses in the global village.

They can live to be 10-20 years old, which I think is pretty impressive for a spider.

Tarantulas usually just hang out at the mouth of their burrow and ambush anything that looks like prey to them. This includes insects and other spiders, but sometimes even lizards and very small mammals.

Identifying tarantula species is apparently difficult because their differences are usually quite subtle. The Arkansas chocolate tarantula (Aphonopelma hentzi), “is presumed to be Arkansas’ only tarantula species” (Barnes, 2002).

If you annoy them (with something like the Wooden Spoon of Silence) tarantulas will rear up and look menacing. Which is pretty awesome.

A slightly annoyed tarantula.

A Wasp and its Prey

A mason wasp (Monobia quadridens) catches a caterpillar.

Maggie E. has a wonderful eye for spotting small fauna. She found this mason wasp (Monobia quadridens) while we were weeding the Heifer Ranch’s herb garden. It had caught this caterpillar and was trying to take off with it. It was a difficult job – the caterpillar probably weighed as much as the wasp – but it finally managed to take it away.

The wasp found the caterpillar difficult to move.

According to the Atlas of Vespidae, these wasps prey on small moth caterpillars. Which is probably why they are usually found in open habitats with flowers; hence the herb garden.

They also use caterpillars to feed their larvae (Wikipedia, 2011). They’ll lay an egg in a cell of their nest and stick a paralyzed beetle larvae, spider or caterpillar in with the egg to feed the wasp larvae when it hatches.

References

The wasp finally managed to drag the caterpillar to the edge of the wooden bench before it could take off.

Identifying these wasps was not too hard. The first image in the google search for “wasp caterpillar” looked just like the bug we found, carrying almost the same type of caterpillar.

The image was from the wonderful “What is that bug?” where you can send in bug pictures and the author (Daniel Marlos) will try to identify them.

What’s That Bug referenced the BugGuide which gives the full taxonomic classification and a lot of information about habitat, food and life cycle that’s in an easily readable form.

The BugGuide, in turn, cites some of the more serious resources – books and such. But it turns out that an excellent reference for the wasps (Vespidae) of northern and eastern North America is available online. It’s the Identification Atlas of the Vespidae (Hymenoptera, Aculeata) of the northeastern Nearctic region (Buck et al., 2008).

The Atlas is hosted on another excellent resource, the Canadian Journal of Arthropod Identification, which is a web-based journal dedicated to documenting Canadian arthropods.

In flight. If you squint properly you can see a black blur, which is the wasp, carrying a yellowish blur, which is the caterpillar.

Butterflies in the Herb Garden

A spicebush swallowtail butterfly (Papilio troilus) in the herb garden.

At the Heifer International ranch. Time spent weeding the herb garden. Not much weeding done (by me at least), but much photography. Pretty. A word designed for butterflies.

A variegated fritillary butterfly (Euptoieta claudia) in the herb garden.
An eastern tiger swallowtail butterfly (Papilio glaucus; officially documented by Linnaeus in 1758).
A skipper (family Hesperiidae) extracts nectar from a flower in the herb garden.

Butterflies are classified as:

Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera

References

Maggie Eisenberger, personal communication.

Opler, Paul A., Kelly Lotts, and Thomas Naberhaus, coordinators. 2011. Butterflies and Moths of North America. Bozeman, MT: Big Sky Institute. http://www.butterfliesandmoths.org/ (Version 10/08/2011).

Flynn, J., 2007. Georgia Butterflies, Bibb Co. GA. http://www.shrike.net/butterflies/0-regions/bibb.htm (Accessed 10/08/2011).

Phosphorus: What is it good for?

So other than digging in Morocco, where do we get more phosphorus? Here’s a hint: the symbol for phosphorus on the periodic table… is “P.”

— Horwich (2011): The end of phosphorus on APM’s Marketplace.

Marketplace’s Jeff Horwich has an excellent article on the uses of the element phosphorus, where it comes from, why it’s getting scarce, and where we might get more.

The answers to these questions are:

  • It’s a key element in DNA, so the major use is fertilizer,
  • most of it comes from Morocco these days,
  • since Morocco supplies about 85% of the world supply, they’re developing a bit of a monopoly and the price is going up,
  • the main alternative sources are manure and urine that have lots of phosphorous. In fact, burning sewage leaves behind a phosphorous rich ash.

Marketplace tells the story in much more detail.

It Takes a Long Time to Go Away: Collecting Garbage on Deer Island

Collecting anthropogenic debris on the beach.

Plastic bottles take 100 years to break down; styrofoam cups – fifty years; aluminum cans – 200 years; glass bottles, which are made of silica, just like the beach’s white sand – who knows. So we took a little time out of our adventure trip to collect anthropogenic debris as we walked along the beach on Deer Island.

Leather (shoe) - 50 years.
Plastic bags - 10 to 20 years.
Styrofoam cup - 50 years.
Plastic bottles - 100 years.
Tin cans - 50 years. Aluminum cans - 200 years.

We picked up stuff on our way out, so we were able to enjoy the fruits of our labours on our walk back to the landing point.

The beautiful beach cleared of garbage.

Note

The degradation times for marine garbage can be found on the SOEST website, but That Danny has an interesting compilation of data that tries to reconcile the different degradation times you can find on the web.