Blowing Bubbles to Acidify Water

Changing colors of universal indicator show how blowing bubbles acidifies water (light green-second beaker) from neutral pH (dark green-third beaker) standard. For comparison, the first beaker (red) is acidified while the last beaker (blue) is made alkaline.

CO2 + H2O —-> H2CO3

This useful little reaction, where carbon dioxide reacts with water to produce carbonic acid, came up in my middle school class when we talked about respiration, it’ll come up soon in environmental science with the effects of carbon dioxide on the oceans (acidification), and it offers the opportunity to discuss pH and balancing chemical reactions in chemistry.

The middle school class did the neat little experiment where students blow bubbles in water (through a straw), and the carbon dioxide in their breath reacts with the water to slightly acidify it. A little universal pH indicator in the water (or even cabbage juice indicator) shows the acidification pretty well if you make sure to keep a standard nearby so students can see the change in color.

The fact that the CO2 in your breath is enough to acidify water begs the question — which was asked — how much of the air you exhale is carbon dioxide? According to the Oak Ridge Carbon Dioxide Information Analysis Center’s FAQ page, it’s concentration is about 3.7% by volume. Which is a lot more than the 0.04% average of the atmosphere.

Of course if you really want to talk about the pH you need to get into the acid equilibrium and the dissociation of the carbonic acid to produce H+ ions; you can get the these details here.

Ice-Albedo: A not-so-Positive Feedback

This summer’s arctic ice cap is the smallest since we’ve started watching it from space in the 1970’s, and the summer isn’t over yet.

Over the last few years, the rate at which the ice is melting is accelerating, probably due to the ice-albedo feedback. Albedo refers to how reflective a surface is; the average of the Earth is about 31%, while snow and ice has an albedo closer to 90%.

When the albedo is high, a lot of sunlight is reflected back into space, but when it’s lowered, such as when the sea-ice melts, the surface absorbs a lot more sunlight, which heats it up. Of course, more heat melts more ice which further decreases the albedo which causes more warming which melts more ice …. And you can see the problem.

The ice albedo feedback takes a small change (melting ice) and accelerates it. That’s a positive feedback, although the effects are usually not what you want, because they take the system (the Earth’s climate in this case) away from it’s current equilibrium. This is not to say that there are no benefits; the Northwest Passage will open up eventually, if it has not already.

Extent of Arctic sea-ice at the end of August 2012. The orange line shows the average extent (1979-2000). We're a bit on the low side at the moment. Data from the National Snow and Ice Data Center.

ClimateCentral.org the NSIDC

Global Warming and Changing Ecological Niches

As climate changes, biomes move, and the range of the brown recluse spider migrates north and east (blue area) from its current location (red dashed line). Image adapted from Saupe et al. (2011).

Just in time for us to learn about global change, this interesting study on the expanding range of brown recluse spiders came out. Once restricted to the southern U.S. and the midwest, future climate change will allow them to expand north to Minnesota and east into Pennsylvania.

The researchers, Saupe et al. (2011), used ecological niche modeling. This method takes known information about where the spiders live, such as climate (e.g. summer temperatures) or topography (e.g. mountains versus plains), to figure out the current extent of their ecological niche. Then they use climate models to figure out where those same conditions will apply in the future. Thus the spiders march north.