The CDC on Zombie Preparedness

Poster from the CDC.

The Centers for Disease Control (CDC) has been thinking about the potential for a zombie apocalypse. You can find a page on Zombie Preparedness on their website, as well as a graphic novel (9Mb pdf).

If you are generally well equipped to deal with a zombie apocalypse you will be prepared for a hurricane, pandemic, earthquake, or terrorist attack.

— Ali Khan (2011) (Head of the Office of Public Health Preparedness and Response at the Centers for Disease Control and Prevention): Quoted in Zombie Preparedness on the CDC website.

NOTE: The CDC recommends you quarantine zombies rather than kill them; Kyle Munkittrick, of the Pop Bioethics blog disagrees.

And Poetry Soothes the Savage Beast

Poetry can be disjointed, illogical and irrational. Sam Tanenhaus argues that that is why poetry helps us make sense of catastrophes and disasters.

One of the enduring paradoxes of great apocalyptic writing is that it consoles even as it alarms.

This has been, in fact, one of the enduring “social” functions of literature — specifically, of poetry. Narrative prose is less well suited to the task. This isn’t surprising: narrative implies continuity and order — events that flow forth in comprehensible sequence, driven by motive forces of cause and effect. …

But catastrophe defies logic. It faces us with disruption and discontinuity, with the breakdown of order. The same can often be said of poetry itself. It operates outside the realm of “logic.” Rather, it obeys the logic of dreams, of the unconscious. This is especially the case with lyric poetry, with its suggestion of vision and prophecy.

— Tanenhaus (2011): The Poetry of Catastrophe, on the New York Times’ Arts Beat Blog.

Andrew Sullivan, on the Daily Dish, highlights W. B. Yeat’s “The Second Coming,” as being quite apt to the topic. It was written just after World War I (Poem of the Week).

Turning and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world,
The blood-dimmed tide is loosed, and everywhere
The ceremony of innocence is drowned;
The best lack all conviction, while the worst
Are full of passionate intensity.

Surely some revelation is at hand;
Surely the Second Coming is at hand.
The Second Coming! Hardly are those words out
When a vast image out of Spiritus Mundi
Troubles my sight: somewhere in sands of the desert
A shape with lion body and the head of a man,
A gaze blank and pitiless as the sun,
Is moving its slow thighs, while all about it
Reel shadows of the indignant desert birds.
The darkness drops again; but now I know
That twenty centuries of stony sleep
Were vexed to nightmare by a rocking cradle,
And what rough beast, its hour come round at last,
Slouches towards Bethlehem to be born?

— Yeats (1919): The Second Coming, (via Poets.org).

Volcanic eruption in Japan: Shinmodake

Shinmodake Volcano in southern Japan (center). This picture predates the big earthquake. Image from NASA Earth Observatory: Shinmoe-dake Volcano Erupts on Kyushu..

The Shinmoedake Volcano erupted on January 19th after being dormant for two years, however, two days after the big Japanese earthquake, it began spewing ash once again. The two are not necessarily connected.

Volcanos and convergent margins go together. Typically, the plate being subducted melts as it is pushed deeper into the Earth and temperatures rise. It also helps that the water in the crust and sediment of the subducting plate makes it easier to melt, and makes the resulting magma much more volatile and explosive.

The subducting plate melts producing volatile magma.

But although Shinmoedake is in Japan, it is not on the same tectonic boundary as the earthquake. The northern parts of Japan are where the Pacific Plate is being subducted beneath the Okhotsk Plate. This volcano is connected to the subduction of the Philippine Plate to the south.

The large earthquake's epicenter and the Shinmoedake volcano are on different plate margins. Image adapted from Wikimedia Commons user Sting.

This does not necessarily mean that the two occurrences are totally unrelated. Seismic waves from the big earthquake could have been enough to incite magma chambers that were just about ready to blow anyway.

The map below is centered on the series of craters in the region of the erupting volcano.


View Larger Map

Nuclear Meltdown in Japan

CNN has an informative interview on the explosion at the Fukushima nuclear plant in Japan after the earthquake and tsunami.

Footage of the explosion from the BBC:

Nuclear disasters are so rare that they’re easy to forget about when we’re talking about the right mix of alternative (non-carbon based) energy sources for the future.

Right after the accidents at Three Mile Island in 1979 and Chernobyl in 1986, awareness of the dangers lead to a de facto moratorium on nuclear power plants in the U.S.. This was good in that people were now treating nuclear power much more respectfully, and incorporating the costs of potential accidents into their calculations. However, it also reduced the interest and effort of developing newer and safer types of nuclear plants.

We’ll have this discussion next year when we focus more on the physical sciences.

UPDATE:

1. More details on how nuclear plants work can be found in Maggie Koerth-Baker’s post, Nuclear energy 101: Inside the “black box” of power plants.

Fukushima reactor status as of March 16th, 5:00 pm GMT from the Guardian live blog.

2. The Guardian’s live blog has good, up-to-date information on the status of the nuclear reactors at Fukushima.

Plate Tectonics and the Earthquake in Japan

The magnitude 8.9 earthquake that devastated coastal areas in Japan shows up very clearly on the United States Geologic Survey’s recent earthquake page.

The big red square marks an aftershock of the magnitude 8.9 earthquake off Japan. (Image via USGS). Note that most of the earthquakes occur around the edge of the Pacific Ocean (and the Pacific Plate).

Based on our studies of plate tectonics, we can see why Japan is so prone to earthquakes, and we can also see why the earthquake occurred exactly where it did.


View Larger Map

The obvious trench to the east and the mountains and volcanoes of the Japanese islands indicate that this is a convergent margin. The Pacific plate is moving westward and being subducted beneath the northern part of Japan, which is on the Okhotsk Plate.

The tectonic plates and their boundaries surrounding Japan. The epicenter of the earthquake is along the convergent margin where the Pacific Plate is being subducted beneath the Okhotsk Plate. Image adapted from Wikimedia Commons user Sting.

The epicenter of the earthquake is on the offshore shelf, and not in the trench. Earthquakes are caused by breaking and movement of rocks along the faultline where the two plates collide.

In cross-section the convergent margin would look something like this:

Diagram showing the tectonic plate movement beneath Japan. Note the location of the earthquake is beneath the offshore shelf and not in the trench.

The shaking of the sea-floor from the earthquake creates the tsunamis.

So where are there similar tectonic environments (convergent margins)? You can use the Google Map above to identify trenches and mountain ranges around the world that indicate converging plates, or Wikimedia Commons user Sting’s very detailed map, which I’ve taken the liberty of highlighting the convergent margins (the blue lines with teeth are standard geologists’ markings for faults and, in this case, show the direction of subduction):

Convergent plate boundaries (highlighted blue lines) shown on a world map of tectonic boundaries. The blue lines with teeth are standard geologic symbols for faults, with the teeth showing the direction of the fault underground. Image adapted from Wikimedia Commons user Sting.

The Daily Dish has a good collection of media relating to the effects of the quake, including footage of the tsunami inundating coastal areas.

Cars being washed away along city streets:

Our thoughts remain with the people of Japan.

UPDATES:

1. Alan Taylor has collected some poignant pictures of the flooding and fires caused by the tsunami and earthquake. TotallyCoolPix has two pages dedicated to the tsunami so far (here and here).

2. Emily Rauhala summarizes Japan’s history of preparing for this type of disaster. They’ve done a lot.

3. Mar 12, 2011. 2:10 GMT: I’ve updated the post to add the map of the tectonic plates surrounding Japan.

4. A CNN interview that includes video of the explosion at the Fukushima nuclear power plant (my full post here).

5. NOAA has an amazing image showing the tsunami wave heights.

Tsunami wave heights modeled by NOAA. Note the colors only go up to 2 meters. The maximum wave heights (shown in black in this image), near the earthquake epicenter, were over 6 meters.

They also have an excellent animation showing the tsunami moving across the Pacific Ocean. (My post with more details here).

6. The United States Geological Survey (USGS) put out a podcast on the day of the earthquake that has interviews with two specialists knowledgeable about the earthquake and the subsequent tsunami, respectively. Over 250 kilometers of coastline moved in the earthquake which is why the tsunami was so big. They also have a shakemap, that shows the area affected by the earthquake.

USGS ShakeMap for the earthquake. Image via the USGS.

7. ABC News (Australia) and Google have before and after pictures.

8. The University of Hawaii has a page about, Why you can’t surf a tsunami.

9. A detailed article on earthquake warning systems, among which, “Japan’s system is among the most advanced”, was recently posted in Scientific American.

10. Mar 15, 2011. 9:15 GMT: I’ve added a map of tectonic boundaries highlighting convergent margins.

Shinmoedake Volcano.

11. The Shinmoedake Volcano erupted two days after the earthquake, but they may be unrelated.

Fukushima reactor status as of March 16th, 5:00 pm GMT from the Guardian live blog.

12. The Guardian’s live blog has good, up-to-date information on the status of the nuclear reactors at Fukushima.