NASA’s Heliophysics (physics of the sun) website has an excellent collection of videos that would link quite nicely with physics discussions of the physics of light (electromagnetism) and the Earth’s magnetic field (as well as the action of charged particles in a magnetic field.
They also have awesome solar videos, like this one of coronal rain.
Natural phenomena like this are great for students to analyze because they require the integration of multiple concepts to explain.
Elements can be identified from the color of light they give off when they’re ionized: their emission spectra. Ms. Wilson’s chemistry class today set fire to some metal salts to watch them burn.
She placed the salt crystals into petri dishes, submerged them in a shallow layer of alcohol, and ignited the alcohol. As traces of the salts were incorporated into the flames, the metal atoms became “excited” as they absorbed some of the energy from the flame by bumping up their electrons into higher electron shells. Since atoms don’t “like” to be excited, their excited electrons quickly dropped back to their stable, ground state, but, in doing so, released the excess energy as light of the characteristic wavelength.
When you look at the sunlight reflected off this black insect’s wings at just the right angle, they blaze bright blue. The phenomena is called iridescence, and results from the way different wavelengths of light refract through the wing membrane. Blue light is of just the right wavelength that the light reflected off the top of the membrane and the light that’s refracted through the membrane constructively interfere. The Natural Photonics program at the University of Exeter has an excellent page detailing the physics of iridescence in butterflies (Lepidoptera), and the history of the study of the subject.
The dust in Mars’ atmosphere scatters red, while the major gasses in Earth’s atmosphere (Nitrogen and Oxygen) scatter blue light. Longer wavelengths of light, like red, will bounce off (scatter) larger particles like dust, while shorter wavelengths, like blue light, will bounce of smaller particles, like the molecules of gas in the atmosphere. The phenomena is called Rayleigh scattering, and is different from the mechanism where different molecules absorb different wavelengths of light.
Ezra Block and Robert Krulwich go into details on NPR.
Dr. Klaus Schmitt has some utterly amazing photographs that simulate what bees and butterflies can see. They can see ultra-violet wavelengths of light, which we can’t.
Schmitt maps the ultra-violet in the image to blue to make it visible to our eyes.
The eye’s lens is pretty good at blocking ultra-violet light, so when Claude Monet (whose works we visited earlier this year) had the lens of his eye removed he could see a little into the ultra-violet wavelengths of light.
The Guardian has an excellent video that explains how the images from the Hubble Space Telescope are created.
Each image from most research telescopes only capture certain, specific colors (wavelengths of light). One camera might only capture red light, another blue, and another green. These are captured in black and white, with black indicating no light and white the full intensity of light at that wavelength. Since red, blue and green are the primary colors, they can be mixed to compose the spectacular images of stars, galaxies, and the universe that NASA puts out every day.
This NASA video updates us on the search for Earth-like planets around other stars. It overviews what’s been found, and outlines some upcoming missions.
The key to finding a planet hospitable to life (as we know it) is finding one with water at the surface. We’ve found large waterworlds that are too large and hot, with “thick, steamy atmosphere[s]”.
We’ve also found Earth-sized planets but they’re, mostly, too close to their stars to support liquid water, and it’s hard to tell what their atmospheres are like because they’re so far away. One of NASA’s upcoming missions, one will look at the light reflected off Earth-sized planets to determine the composition of atmospheres: the technique is called transit spectroscopy, and is based on detecting the emission spectra of the gasses in the atmosphere.