Right hand “man”

Lunch on Wednesdays follows our main block of Student Run Business time. It’s after they’ve delivered pizza, prep-ed for a week of bread, completed finance and its reports, prepared and processed order forms, and sorted out the plants.

Over the last couple weeks I’ve started having my students discuss the business over lunch (including finance reports presentations) and it’s turning into a regular board meeting.

Today they started assigning seating.

We usually sit around two long tables set end to end, with the main supervisor on one end and myself at the other. Today the main supervisor started laying out plates and positions. Pizza supervisor to his right, bread to his right, finances one down from bread and sales across from finances. Everyone else could find their own spot.

I was a little surprised at this unprompted expression of hierarchy. Pizza is our most involved part of the business and the core of the the enterprise so its supervisor, P., has a very important post. She was placed on the right hand of the main supervisor!

I asked the main supervisor why he did it. He said, “I don’t know.” I even had to explain the meaning of the term, ‘right hand “man”‘.

It ended up with the supervisors at one table and everyone else (and myself) at the other.

Except for the plants supervisor. Plants have been going slowly, lately, including some seedling failures. The plant supervisor sat all the way down the table, next to me.

I can feel it in my bones that there are some interesting lessons in all this. From organizational structure to non-verbal communication.

But since we’re dealing with positions around a table, and we’ve been talking about the importance of place in geography, the best context to discuss this right now might just be one of the importance of geography and place in the interactions among people.

Cells, cells, cells

Onion cells stained with iodine. 100x magnification.

We spent the afternoon period on science. I’d given some individual microscopy lessons during the last immersion, where we looked at exciting protozoans moving around in pond water. This time they tried their hands at onion cells and staining with iodine, using a very nice and clear YouTube video posted below (kyliefansunited, 2008) as a reference.

Nucleus of an onion cell stained with iodine and, for experimentation, Congo Red. 1000x magnification

The immersion oil had arrived in the mail earlier in the week so we got to try out the 100x oil lenses. We can now see structures inside the nucleus quite nicely.

Other things did not go so well. I’d written up, using the excellent recommendation of Anna Clarke, what I though was a neat exercise to look at the effect of osmosis on the cells of a waterplant, Egeria densa. The small group struggled with it, I think in large part because they were not quite prepared (had not done the background reading), and weren’t working very well together today. I’ll keep it on the schedule, but next time I’ll have to think hard on if it will be necessary to tweak the exercise.

Osmosis under the microscope

The effects of placing freshwater plant cells (Egeria densa) in salt water solution.

In a bit of a hurry, I swung by the pet store and picked up the aquatic water plant with the thinnest leaves I could find. It turned out to be Egeria densa, and while not the Elodea recommended by my expert contact Anna Clarke as a good subject for some microscope work, it seemed quite similar.

Egeria densa plants sitting in shallow water in the sun.

I needed the plant for an osmosis experiment. Dropping a little salt water on leaf cells of a freshwater plant should suck all the water out of the vacuoles and through the cell walls, potentially collapsing the cells (wouldn’t that be cool). I’d never done this before so I was quite curious to see what would actually happen.

Leaf tip of Egeria densa. 40x magnification.

The leaves have multiple layers of cells, so it’s hard to distinguish much at the center of a freshly clipped leaf, especially at high magnification. But if you look at the cells at the edges of the leaves, you can see some really neat looking, spiky cells, for which, I’m willing to bet, biologists have some really cool, multisyllabic name.

Spiky cell under 1000x magnification.

With a little bit of immersion oil and a 1000x objective, the spiky cells are good subjects for magnification: they’re a bit larger than their neighbors so they’re easier to see; their chloroplasts are distinct; and you can even make out the nucleus without staining.

Then I added the salt solution, and while the cell walls stayed strong, the cytoplasm collapsed into a little droplet at the center of the cell. The chloroplasts and the nucleus were all bundled together in this central blob (see the image at the top of the post). It’s quite the neat effect, though not exactly what I thought to see.

Spiky Egeria cells with iodine stain.

An interesting side note is that the cell nuclei show up very nicely with iodine stain, but the stain also discolors the chloroplasts.

Mural

Artist Mary Cour throwing herself into the mural.

We’ve been really lucky to have the artist Mary Cour help us out with our classroom mural. She came up with the idea about two cohorts of students ago to paint students’ outlines on the wall and let the students fill them in with words and images that were meaningful to them. Early adolescence is a time of self-discovery and exploration, so this type of project is a wonderful way to encourage self reflection. I let students work on their silhouettes during personal reflection time, and they’re always eager; it’s easy to see why Facebook is so popular with this group.

The mural became quite the marker for the students and for the school, so now, every two years, we add the new group of students to the wall. The new outlines are superimposed over the older ones so you can still see previous generations of students, a tangible reminder of their legacy in the classroom.

Microscope photography!!!

Algae and amoebas at 400 times magnification.

Did you know that if you hold up a regular digital camera up to the eyepiece of a microscope you can take a great picture of a magnified slide! I didn’t. And I really didn’t think it would work when I tried it, but the results are remarkable. With a somewhat steady hand you can also make decent animations.

If you look carefully you can see the amoebas zipping around. I also have a really cool larger version too, which shows the entire slide..

I’ve never been very good at identifying things (I’m a lumper not a splitter) so all I think I can say for sure is that there are algae and protozoans in the picture. BiologyCorner has a nice identification guide for organisms usually found in ponds, which is part of one of their lessons, Biodiversity of Ponds.

Resurrecting the greenhouse

Two years ago, the middle school’s flagship project was to put up a fully functional greenhouse (using this design). It took all year but we did it. On the way, we got to practice geometry, mapping and construction, while learning and growing plants and studying soil profiles. It was so successful that, with our spring plant sale we broke even on the entire project.

Last year, however, the greenhouse was somewhat neglected. My plans to add an automatic window opener, which would have been a wonderful tie-in to our electronics and Newtonian physics studies, did not work out; we just did not have the time. We’d taken the plastic covering off, so only the bare, forlorn PVC frame was left standing around a plot of waist-high weeds.

Though I could not have predicted it, this year we have a strong core group of students who are highly enthusiastic about resurrecting the greenhouse and making it work. My suggestion was that we try to grow produce this fall that we could cook in December when we do our Dinner and a Show. Well, two weeks in, they’ve already put together a menu plan, weeding is well on its way and I’m being harassed to hurry up and arrange a trip to Home Depot. The excitement is so infectious that another student has volunteered to bring in his electric weed-whacker during the immersion. It’s amazing!

I’m having the hardest time not butting in. There is a beauty in seeing a well oiled machine executing a project or solving a difficult problem. But there is another even more wonderful aesthetic visible in a the birthing struggles of a nascent team. The forward motion of infectious enthusiasm is pulling puzzle pieces into its wake, and the pieces just seem to click into place when the time is right. I have to keep reminding myself that my job is to prepare the environment and let the kids do the rest.

Toilet Paper Timeline in practice

Who thinks they're at the most important event?

The Toilet Paper Timeline of Earth History worked as well as I’d hoped. The beginning was a bit boring, it was a challenge keeping the kids focused, since nothing much happens for a very long time. It helped that we had to unroll the toilet paper back and forth across the room, so I had a different student take over every time we had to turn around.

That was not quite enough though to keep them from getting distracted, however, so I also assigned people to stand at the location of major events. This worked out nicely in the end because it let me ask them, at the end, whose event was the most important? Most of them made some argument without any prompting; the group is already pretty comfortable with each other and are not afraid of speaking up.

During the unrolling, most events occur in the final two turns. Students did notice this fact, which is the ultimate point of the exercise. Getting them to talk about different events, like the time of the first multicellular organisms or the extinction of the dinosaurs, helped students own the work. All together, it seemed to strike their imaginations.

They also seem to like using Cartoon History of the Universe as their reading assignment.

The Pre-Cambrian. Nothing much happens for a long, long time.

Making pectin

Extracting pectin for making jelly does not seem to be that hard. Sam Thayer has a nice little article on how to get pectin from apples. The blog Spain in Iowa, has some nice pictures and video of how they extracted pectin from apples and what the result should look like when you test it by putting a teaspoon of pectin into a teaspoon of rubbing alcohol. Almost immediately (but leave it in for a minute), the pectin should jell in the rubbing alcohol and you should be able to pull it out using a fork.

Basically, all you do is chop up the apples, cook them for a long time over low heat till they’re broken down, and then strain out the liquid produced. Since I have access to a lot of green apples that won’t be used for anything else, I tried the process myself. Using a pot full of apples I produced a lot of liquid; way more than I could ever use, but the process seems to work fairly well.

One 8 quart pot of apples produced 8.75 cups of liquid. I’d planned to use the home-made pectin in my currant jam, but testing the currant juice showed that it had just as much, if not more pectin than my boiled apple residue. I guess I’ll save the apple pectin for future use.

Ideally, Student Run Businesses should sell goods or services that are worth the value paid. While I appreciate that there is some value to the sympathy of friends and family, it is nice when customers believe they’re getting a good deal even without that. One direction I try to direct the students is toward making things from scratch, because it adds so much to the experience. Then they can have the extra value of using natural, perhaps even organic, ingredients and satisfying Michael Pollan’s rules for good eating.

In Defence of Food by Michael Pollan

My students have not yet tried jam or jelly-making, but if they do natural pectin would be great.