The Science of Cookies

We’ve looked at the simple acid/base reactions that produce the carbon dioxide bubbles in chocolate-chip cookies, but this video goes over a number of other relevant chemical concepts and the temperatures at which changes occur, including:

  • Emulsions: butter is an emulsion that separates into its constituent fats and water at 92ºF,
  • Denaturing proteins: at 144ºF proteins denature and then coagulate,
  • Evaporation: at 212ºF
  • Carbon dioxide production: from the reaction of baking soda and acid in the dough
  • Maillard reactions: at 310ºF amino acids and denatured proteins react with sugars to brown the cookies and create lots of excellent flavors
  • Caramelization: at 356ºF sugars break down and reform into interesting, tasty compounds

Science of Pancakes

Scientific American has an article on “The Scientific Secret of Fluffy Pancakes” that nicely covers the chemistry of gluten. The article includes a recipe, but I tend to prefer buttermilk pancakes (Cook’s Illustrated has a great buttermilk pancake recipe that I find tastes even better if you leave out the sugar).

My wife has been experimenting with gluten-free pancakes and I’ve discovered that I like hers even better because of all the ground nuts it includes. However, in the gluten-free recipes, crucially, Xanthan gum is used to replace the gluten in capturing the carbon dioxide bubbles created by the baking powder reacting with the acid in the recipe. While the gluten is sensitive to how much the batter is mixed (stretching out the proteins), the quantity of Xanthan gum is more important in the gluten-free recipes.

Maggie Eisenberger.

The Science of Champagne Bubbles

This nice little video combines a bit of physics, chemistry, and biology as it discusses how bubbles form in champagne: the gas is carbon dioxide; carbon dioxide forms from the fermentation of sugars by yeast — it’s a byproduct of the reaction that produces alcohol; the bubbles form at tiny flaws or bubbles in the glass (so you can put in tiny flaws to control where the bubbles form); the bubbles rise because the gas is less dense than the liquid around it; and the bubbles expand as they rise because the pressure of the liquid becomes less and less the closer to the surface you are.

The Dish