Enjoy the Silence

… an emerging body of research is suggesting that spending time alone, if done right, can be good for us — that certain tasks and thought processes are best carried out without anyone else around, and that even the most socially motivated among us should regularly be taking time to ourselves if we want to have fully developed personalities, and be capable of focus and creative thinking [my emphasis].

–Leon Neyfakh (2010): The Power of Lonely in The Boston Globe.

Every day (almost) we have half an hour blocked off for Personal World. It’s a time for reflection, a time to collect ourselves, and a time to be alone. Adolescents in general tend to be social animals, but, as Leon Neyfkh points out:

… a certain amount of solitude has been shown to help teenagers improve their moods and earn good grades in school.

–Leon Neyfakh (2010): The Power of Lonely in The Boston Globe.

Neyfakh’s article provides a nice roundup of research into the importance of solitude.

Volcanic eruption in Japan: Shinmodake

Shinmodake Volcano in southern Japan (center). This picture predates the big earthquake. Image from NASA Earth Observatory: Shinmoe-dake Volcano Erupts on Kyushu..

The Shinmoedake Volcano erupted on January 19th after being dormant for two years, however, two days after the big Japanese earthquake, it began spewing ash once again. The two are not necessarily connected.

Volcanos and convergent margins go together. Typically, the plate being subducted melts as it is pushed deeper into the Earth and temperatures rise. It also helps that the water in the crust and sediment of the subducting plate makes it easier to melt, and makes the resulting magma much more volatile and explosive.

The subducting plate melts producing volatile magma.

But although Shinmoedake is in Japan, it is not on the same tectonic boundary as the earthquake. The northern parts of Japan are where the Pacific Plate is being subducted beneath the Okhotsk Plate. This volcano is connected to the subduction of the Philippine Plate to the south.

The large earthquake's epicenter and the Shinmoedake volcano are on different plate margins. Image adapted from Wikimedia Commons user Sting.

This does not necessarily mean that the two occurrences are totally unrelated. Seismic waves from the big earthquake could have been enough to incite magma chambers that were just about ready to blow anyway.

The map below is centered on the series of craters in the region of the erupting volcano.


View Larger Map

A Diversity of Education

Pluralism … allows individual schools, educators, and providers to excel at something, rather than asking every school to excel at everything.

–Hess (2010): Doing the Same Thing Over and Over in AEI Outlook Series.

Frederic Hess’ new book advocates a diversity in educational formats. Steven Teles has a detailed review.

The Same Thing Over and Over: How School Reformers Get Stuck in Yesterday's Ideas by Frederic Hess.

Hess shares the same basic premise of most progressive, constructivist, educational approaches like Montessori’s, that students learn differently so they need different educational approaches. However, he takes this need for diverse educational environments further with the recognition that teachers are different so they will have their own educational philosophies and methods that work best for them, and that parents are different, with very different expectations about what education should be and what it should accomplish.

… the basic components of schooling—parents, children, school leaders, and teachers—are irreducibly diverse. Parents have different ideas about what a “well-educated” child is, and children differ quite significantly in temperament, aptitude, habits, and interests. School leaders vary as to how they think schools should be run, while teachers have different skill levels, enthusiasm for different tasks, and ideas about what children should learn and know.

… Educators will always be less effective if they are made to teach in a way that they believe is wrongheaded or that they haven’t bought into. Students will have difficulty learning if they are forced to work at a pace that is too fast or too slow, or if they are taught in a manner that doesn’t match their individual learning styles. Parents can be disengaged or hostile if the pedagogy, discipline, or school culture differ fundamentally from what they think is right for their child. And schools as a whole will be incoherent and disorganized if they cannot count on some baseline of agreement as to what—and who—the school is for.

— Teles (2011): One Size Doesn’t Fit All in Washington Monthly.

Although Hess works for the conservative American Enterprise Institute his own thought on education are far from traditional:

[T]here is value in nurturing diverse intellectual traditions, models of thought, bodies of knowledge, and modes of learning. It is prudent to embrace a system of schooling that nurtures a diverse set of skills, knowledge, and habits of mind. This allows us to foster intellectual diversity that enriches civil society and … [i]t allows individual schools, educators, and providers to excel at something, rather than asking every school to excel at everything.

–Hess (2010): Doing the Same Thing Over and Over in AEI Outlook Series.

Furthermore, Hess argues, the world has changed since the inception of universal education, but the educational system has not adapted to the changing needs and technology. He points out new innovations allowed by technology, like the School of One program in New York.

All of this is hard to argue with. It’s almost the standard constructivist critique of the current educational system, although constructivists tend to focus on how we’ve not applied all the stuff we’ve learned about pedagogy since the 19th century (Lillard, 2005 lays out this argument eloquently in Montessori: The Science Behind the Genius).

Hopefully, this book broadens and advances the arguments for reforming the educational system. It is a progressive view from a conservative organization. Yet it still begs the question of how do we get there from here, while dealing the serious concerns that greater diversity may well lead to some failures as well as successes. Ultimately, we end up with the same fairly intractable problem. However, how do you measure success where there is such a diversity of expectations for education?

Tsunami

The tsunami spawned by the recent earthquake off Japan did most of the damage we know about so far. The U.S. National Oceanic and Atmospheric Administration’s Center for Tsunami Research uses computer models to forecast, and provide warnings about, incoming tsunami waves. They have an amazing simulation showing the propagation of the recent tsunami across the Pacific Ocean (the YouTube version is here).

Images captured from the NOAA simulation. The full resolution, 47Mb video can be found here, on NOAA's site.

They’ve also posted an amazing graphic showing the wave heights in the Pacific Ocean.

Tsunami wave heights modeled by NOAA. Note the colors only go up to 2 meters. The maximum wave heights (shown in black in this image), near the earthquake epicenter, were over 6 meters.

Of course, these are the results of computer simulations. As scientists, the people at NOAA who put together these plots are always trying to improve. Science involves a continuous series of refinements to better understand the world we live in, so the NOAA scientists compare their models to what really happen so they can learn something and do better in the future. Perhaps the best way to do this for the tsunami is by comparing the predictions of their models to the actual water height measured by tidal gages:

The red line is the tsunami's water height predicted by the NOAA computer models for Honolulu, Hawaii, while the black line is the actual water height, measured at a tidal gauge. Other comparisons can be found here.

You’ll notice that NOAA did not do a perfect job. They did get the amplitude (height) of the waves mostly right, but their timing was a little off. Since it’s about 6000 km from the earthquake epicenter to Honolulu, being off by a few minutes is no mean feat. Yet I’ll bet they’re still working on making it better, particularly since some of the other comparisons were not quite as good.

Finally, if you were wondering, attempting to surf a tsunami is not a good idea. For one thing, there is no nice face to surf on:

… a tsunami wave approaching land is more like a wall of whitewater. …. Since the wave is 100 miles long and the tail end of the wave is still traveling at 500 mph, the shore end of the wave becomes extremely thick, and is forced to run far inland, over streets and trees and houses. …. And remember, the water isn’t clean, but filled with everything dredged up from the sea floor and the land the wave runs over–garbage, parking meters, pieces of buildings, dead animals.

— Natural Hazards Hawaii, University of Hawaii at Hilo: Why you can’t surf a tsunami

UPDATE: Terrifying video of the tsunami:

Nuclear Meltdown in Japan

CNN has an informative interview on the explosion at the Fukushima nuclear plant in Japan after the earthquake and tsunami.

Footage of the explosion from the BBC:

Nuclear disasters are so rare that they’re easy to forget about when we’re talking about the right mix of alternative (non-carbon based) energy sources for the future.

Right after the accidents at Three Mile Island in 1979 and Chernobyl in 1986, awareness of the dangers lead to a de facto moratorium on nuclear power plants in the U.S.. This was good in that people were now treating nuclear power much more respectfully, and incorporating the costs of potential accidents into their calculations. However, it also reduced the interest and effort of developing newer and safer types of nuclear plants.

We’ll have this discussion next year when we focus more on the physical sciences.

UPDATE:

1. More details on how nuclear plants work can be found in Maggie Koerth-Baker’s post, Nuclear energy 101: Inside the “black box” of power plants.

Fukushima reactor status as of March 16th, 5:00 pm GMT from the Guardian live blog.

2. The Guardian’s live blog has good, up-to-date information on the status of the nuclear reactors at Fukushima.

Erosion in action

With a little help to get started, the water erodes a channel, transporting sediment to the ocean.

For what it’s worth (and it seems a reasonable explanation to me):

The beach sits at the base of a valley which has a small stream running through it. Due to wave action, sand gets pushed up into a large hill in front of the stream each winter. This creates a natural dam that the stream water collects behind for months which is about 20 feet above the level of the ocean on the other side of the sand berm. Every year some one digs a trench through the sand releasing millions of gallons of fresh water into the ocean.
– YouTube User:Hackfleischhasser comments on the video Waimea River

Limestone Trails at Montgomery Bell State Park


View Limestone Bed Hike at Montgomery Bell in a larger map

This short hike that follows a limestone bedded creek, will likely take a while because there’s quite a bit of geology to see.

The start of the hike is on the eastern side of the bridge between the villas and the hotel. Head north (left in the image) toward the lake.

This year, it was on a chilly, rainy morning in February, that we started on our hike. We took a left off the concrete stairway onto the trail that runs parallel to the river flowing in the ravine just below our cabins.

We’d stayed at the villas at Montgomery Bell State Park, which is about an hour east of Nashville. The villas are quite nice. Built into the side of the valley, sitting just across a small river from the park’s hotel/conference center, and designed to be energy efficient, they’re quite comfortable with their geothermal heating and vaulted ceilings.

They’re so nice that some wanted to stay in the warm. Others, however, were eager to get outside, despite, or perhaps even because of, the rain. I gave them the choice, but everyone came.

With the rain, we soon ran into trouble. Runoff from the road and building uphill converted part of the trail into a small stream. The first few brave souls committed to wet feet, and waded through.

The dam and lake at Montgomery Bell.

But the stream along the trail did not last long. Pretty soon we left it behind, and coming out of the valley the lake and dam opened up to the right and left. Though it had been raining for much of the previous night, the lake was still very low after the dry autumn and winter. The line of grass that marks its usual shoreline was over a meter above the level of the water.

Short concrete wall that acts as the outlet level for the dam.

So we crept along the southern edge of the dam to follow the path of the overflow channel. It was quite interesting to see the sediment and debris that choked the reservoir side of the concrete wall that regulates the level of the lake. The other side of the wall, where the water must accelerate as it overtops the barrier, was clean, bare and smooth, looking a lot like concrete until you get close enough to see that it’s hard, dark, limestone bedrock.

Drill-hole with radial shatter pattern.

But not hard enough. Small, round holes pockmark the rock. Clearly artificial, with radial cracks diverging from the center, they remind me of Sarajevo roses.

They’re probably contemporaneous with the building of the dam. In order to have their outflow channel, the dam builders needed to blast away some of the rock, so they drilled holes and filled them with explosives. The blasts crushed the upper layers of rock, but the bedding plane, upon which we are walking, dissipated the force and remained, mostly, intact.

Following the reservoir outflow channel.

The bedding plane is a bit slippery with the rain and light coating of moss, so we take a bit more care with our footing. The sides of the outflow channel are steep, with nice exposures of horizontal layers of limestone rocks.

Though I don’t go into it in detail, the different layers, with their different colors, hardness, and fossils, show the changing environment in which the sediments that created these rocks were deposited. The more friable, tan-colored layers were likely formed at a time when sea-level was lower, when this area was closer to the coastline so more sand and clays could settle out of the muddy waters emerging from fecund deltas. On the other hand, the dark, dense, grey limestone rocks are much more typical of deeper seas, offshore environments.

Tree roots prying apart the bedrock: biological weathering.

I did take the time to elaborate on the topic of weathering when my students pointed out the tree growing on the side of the cliff, with its roots entwining and pulling apart the limestone rock. It’s a part of the rock cycle that we had not spent a whole lot of time talking about in the classroom so I was glad for the opportunity.

Joints in limestone. Notice how the layers on either side of the joint line up.

Weathering also plays a part in the widening of joints, and the joints we saw were obvious and important in shaping the course of the channel. Joints are simply breaks in the rocks. When this region was uplifted, the rocks were squeezed and fractured by tectonic forces. There was not enough tectonism to seriously deform the region, the rocks are after all still close to horizontal, but they did break, creating joints that cut right through the bed of our channel and straight through the wall.

You’ll notice that the layers on either side of the joint line up, so this is just a fracture in the rock. Often, the rock will break and one side will be pushed up relative to the other; that would be considered a fault.

Runnoff from the rain, flowing along and widening joint in limestone.

One of the nice things about being out in the rain, was that you could see the water in action. Gliding along the joints, picking up and eroding small pieces of debris, while slowly, imperceptibly, dissolving away the rock and enlarging the joints. It’s the same process that created the caves we saw last year at Merimec; the reprecipitation of dissolved calcium carbonate from the limestone rocks is what creates the stalactites, stalagmites and other cave formations.

Looking up the channel at exposed bedding planes and joints.

It took a bit of care to follow the channel down. It also took teamwork. We’ve been practicing all year and it’s under these conditions that all the teambuilding, from the challenge course onward, really pays off.

Committing to wet feet.

At the bottom of the bedrock traverse was a big puddle. The water from the regular outflow of the dam creates pushes up sediment that blocks the free flow of the runoff from the current rainfall. Undoubtedly, this gets washed away when the reservoir overflows through the outlet channel, but today there was just a big puddle.

Here we faced a choice. We could have taken a hard right and walked back up to the dam along the edge of the small cliff that overlooked the outlet channel we’d just come down. It’s a nice walk, through last year’s leaf litter, and the overhang is just high enough to provide a small taste of vertigo. But the students wanted to push on, past the confluence, and follow the stream downhill. A second set of students had made the full commitment to wet feet, and any initial reluctance to be outside on a rainy day had disappeared. We followed the stream.

Convergence of the overflow channel and the drainage stream for the reservoir.

Just a few meters downstream from our decision puddle, we ran into the confluence of the regular outflow from the dam and the ephemeral, rainfall driven stream we’d been following. It’s a good place to talk about tributaries, deltas, and sediment transport, deposition and erosion, because the channel deepens into a little pool with lots of small scale features.

Following the stream.

Past the confluence the stream straightens out. It’s remarkably straight. If it weren’t for the fact that we’re in limestone rocks, it would be easy to assume, given the dam and all, that the lack of sinuosity is artificial. But it seemed like the stream was flowing parallel to the joints we’d seen earlier, so it’s not unlikely that the water is following a fracture in the rock. When convergent, tectonic forces fracture rocks, the rocks tend to break at an angle to the direction of the forces (somewhere around 60 degrees to the direction of the forces, if I remember correctly).

Climbing up to the trail that follows the ridge.

Following the stream brought us close to the picnic shelter near the entrance to the park. Just across the water is a pathway up the rocks on the side of the valley that takes you up to the trail that follows the ridge that parallels the valley.

Looking down at the stream and its floodplain from the top of the ridge.

It’s quite peaceful, standing on the ridge while water droplets drip through the sparse winter canopy, with last fall’s leaf litter beneath your feet.

Looking back down into the valley you could see (and talk about) the stream and its flat flood plain. It’s a chance to anthropomorphize. The stream “wants” to meander. It has to be constrained to one side for a reason.

Crossing the dam on the way back to the cabins (upper left).

The ridge trail takes us back to the reservoir and dam, which are quite noticeable if you’re paying attention. We traipsed down the hill and walked a narrow path between the tall, reddish-tan grass that tops the dam, and the bouldery rip-rap that protects the earthen structure from the force of the waves.

We could see the villas ahead of us.