The Keeping Room

Impromptu concert. The choir practices in the keeping room.

Although we’re not precisely sure why, the choir was quite the popular choice this year. The students are enthusiastic, and our music teacher, Mr. E., does an awesome job. It’s really nice to run into them practicing in the commons.

In this case they were in the Keeping Room — long, vaulted ceiling, remarkable acoustics. They practiced at one end; people accumulated at the other.

The Benefits of Sarcasm

[Sarcasm] appears to stimulate complex thinking and to attenuate the otherwise negative effects of anger

— Miron-Spektor et al., 2011. Others’ anger makes people work harder not smarter: The effect of observing anger and sarcasm on creative and analytic thinking. in J. Applied Psychology via Smithsonian Magazine.

If there’s anyone for whom sarcasm is a primary language, it’s probably adolescents. It can be used to bully or put down, but, according to Richard Chin (2011), is more often used among friends; a bit like positive aspects of teasing.

Chin has a good article that looks over recent research into how sarcasm works on Smithsonian.com.

Apparently, sarcasm exercises the brain more than regular comments:

… observing anger communicated through sarcasm enhances complex thinking and solving of creative problems”

Miron-Spektor et al., 2011.

Personal Ceramic Project

I have a neat little tea strainer that sits inside my almost perfect teacup, yet I’m usually at a loss about what to do with it when I take it out of the cup. When the lid is upside down, the strainer can sit nicely into a circular inset that seem perfectly designed for it; however, if I want to use the lid to keep my tea warm — as I am wont to do — I have to move the strainer somewhere else.

One option is to just put the strainer in another cup, but then air can’t circulate around it, and instead of drying, the used tea leaves stay wet and, eventually, turn moldy. A flat saucer would be better, but not perfect.

Of course, I could just empty out the strainer, wash and dry it as soon as I’m done steeping the leaves, but there are a few ancillary considerations with respect to time that make this a sub-optimal solution.

So, since we have a kiln on campus that sees regular use, I thought I’d sit in on the Middle School art class and make my own ceramic tea strainer holder. Since I’ve also been thinking about Philip Stewart’s spiral, and de Chancourtois‘ helictical periodic tables, and been inspired by Bert Geyer’s attempts at making sonnets tangible, it eventually occurred to me that an open helictical form would work fairly well for my purposes.

I’ve cobbled together a design using Inkscape, and layered it onto a cylinder in Sketchup to see what it would look like.

Draft model of a tea strainer holder.

So far the reactions from students has been quite diverse. I have one volunteer who’s wants to help, and I’ve sparked some discussion as to if what I’m doing actually qualifies as art. There is a lot of curiosity though. The middle-schoolers will probably be doing some type of physical representation of the periodic table, so I’m hoping this project gets them to think more broadly about what they might be able to do.

Terraforming Mars

Image Credit: NASA/JPL-Caltech

Jason Shankel has an article on how we could go about changing the surface of Mars into something humans can live on. He does an excellent job of condensing the not insignificant literature on terraforming the red planet.

Starting with an explanation of Mars’ geologic history, Shankel addresses Martyn Foggs’ list of critical challenges:

  1. The surface temperature must be raised
  2. The atmospheric pressure must be increased
  3. The chemical composition of the atmosphere must be changed
  4. The surface must be made wet
  5. The surface flux of UV radiation must be reduced

— Shankel (2011): How We Will Terraform Mars on io9.com.

The Martian Surface as seen by the rover Opportunity. Image Credit: NASA/JPL-Caltech/Cornell/ASU

The article is expansive in its detail, provides a wonderful primer on the red planet, and demonstrates an excellent application of planetary system science (as opposed to Earth system science) to what would be an enormous geoengineering project. For example, to warm up the planet, Shankel starts with several approaches:

so how do we warm up the Martian poles? Several approaches have been suggested, from spreading dark material on the poles to lower their albedo, to industrial ice farming to good old fashioned thermonuclear detonations.

— Shankel (2011): How We Will Terraform Mars on io9.com.

He then goes into detail. Lots of detail, in a quite readable form.

A desert in Algeria. Image by islapics via Wikimedia Commons.

Human Evolution: A Family Tree

The Smithsonian has an excellent, interactive, family tree for humanity that goes back 6 million years.

io9 has a neat image of key primate and homonid skulls that show the story of human evolution, and how we know about it.

Image via io9. (The skulls come from the collection of the University of Leiden and were labeled by Roosje de Vries.

Boys vs. Girls in Math: The Difference is Only Cultural

Boys tend to be better at math. That’s been the stereotype, but a new study (Kane and Mertz, 2011) published in the Notices of the American Mathematical Society provides evidence that, at all levels, it’s only because society and culture tend to support, and advance the stereotype.

… we conclude that gender equity and other sociocultural factors, not national income, school type, or religion per se, are the primary determinants of mathematics performance at all levels for both boys and girls. … It is fully consistent with socioeconomic status of the home environment being a primary determinant for success of children in school.

— Kane and Mertz, 2011: Debunking Myths about Gender and Mathematics Performance in Notices of the American Mathematical Society.

Kane and Mertz compared math achievement in a number of countries. If there were some genetic reason for different math abilities then boys should be better than girls everywhere. This is not the case. In more wealthy countries where there is more equality between the genders, the mathematics performance gap disappears.

In poorer countries like Tunisia boys tend to do better at math, while in rich ones like Barhrain girls do better. However, in places with greater equity between the genders, like the Czeck Republic, boys and girls do equally well. Figure from Kane and Mertz (2011).