A Catalpa Tree Flower Under the Microscope

More testing of the higher powered stereo-microscope with this flower specimen from a catalpa tree on campus.

Anthers with pollen grains (~25x).

The catalpa tree leaf and flower for reference.

Large catalpa leaf and two flowers.
Detail of longitudinally bisected flower (~7x).
Closeup of petal (~35x).
The colors on the petals come from cells having different colors (~90x).

Lavender Flowers Up Close

Lavender flowers on the stage of the reflecting, stereo microscope.

In addition to the basic stereoscopes with their fixed 10x and 30x magnifications, we also acquired a zoom stereoscope for more serious research projects. I tried it out with a sprig of lavender blossoms.

Closeup of lavender flowers. Magnification 7x.

The clips on the stage weren’t particularly useful for holding something as small as a single flower, so, to see into the flower, I had to improvise with some of the dissection gear.

Holding the lavender flower upright on the stage with a dissection probe.

At larger magnifications, the focal depth is pretty small so it’s tricky trying to get the big picture. Even thought the camera didn’t quite capture it, you can make out the pollen grains.

Looking into a lavender flower from the top. Magnification ~45x.

I tried slicing the flower longitudinally to get a better look inside, and to see how difficult it would be to identify the major parts.

Longitudinal section of a lavender flower. Magnification 14x.

The photos turned out well using a point-and-shoot Nikon camera through the eyepiece, but even these pictures did not capture all the detail visible to the eye.

Lavender flower sliced longitudinally. Two stamens are clear visible. Magnifications ~50x.

With the 2x objective attached, the microscope gets up to 90x magnification, but it becomes very hard clearly see anything after about 60x. All in all, the optics are good, and the lights bright enough to make for a very nice microscope.

Green Onion Under the Microscope

Seed head of a green onion. 10x magnification.

A new set of stereo, reflected-light, microscopes came in last week, and I’ve been testing them out. MPU has a good eye for these things, so I asked him to collect some samples for examination.

The first thing he came up with was this beautiful green onion. The seed head has some remarkable colors, and the microscopes are of good enough quality that we could examine in quite good detail at 10x magnification. We were even able to see a few small insects hanging out on the seed head that would have been invisible to the naked eye. They didn’t like the light, however, and hid before I could get a good photo.

Roots of a green onion. 10x magnification.

Common Errors in English Usage

Paul Brians’ excellent reference, Common Errors in English Usage, is available online.

An example:

LOSE/LOOSE

This confusion can easily be avoided if you pronounce the word intended aloud. If it has a voiced Z sound, then it’s “lose.” If it has a hissy S sound, then it’s “loose.” Here are examples of correct usage: “He tends to lose his keys.” “She lets her dog run loose.” Note that when “lose” turns into “losing” it loses its “E.”

Brians, 2008. Common Errors in English Usage

How to be Lucky

The lucky try more things, and fail more often, but when they fail they shrug it off and try something else. Occasionally, things work out.

— McRaney, 2013: Survivorship Bias on You Are Not So Smart.

David McRaney synthesizes work on luck in an article on survivorship bias.

… the people who considered themselves lucky, and who then did actually demonstrate luck was on their side over the course of a decade, tended to place themselves into situations where anything could happen more often and thus exposed themselves to more random chance than did unlucky people.

Unlucky people are narrowly focused, [Wiseman] observed. They crave security and tend to be more anxious, and instead of wading into the sea of random chance open to what may come, they remain fixated on controlling the situation, on seeking a specific goal. As a result, they miss out on the thousands of opportunities that may float by. Lucky people tend to constantly change routines and seek out new experiences.

McRaney goes also points out how this survivorship bias negatively affects scientific publications (scientists tend to get successful studies published but not ones that show how things don’t work), and in war (deciding where to armor airplanes).