Blowing Bubbles to Acidify Water

Changing colors of universal indicator show how blowing bubbles acidifies water (light green-second beaker) from neutral pH (dark green-third beaker) standard. For comparison, the first beaker (red) is acidified while the last beaker (blue) is made alkaline.

CO2 + H2O —-> H2CO3

This useful little reaction, where carbon dioxide reacts with water to produce carbonic acid, came up in my middle school class when we talked about respiration, it’ll come up soon in environmental science with the effects of carbon dioxide on the oceans (acidification), and it offers the opportunity to discuss pH and balancing chemical reactions in chemistry.

The middle school class did the neat little experiment where students blow bubbles in water (through a straw), and the carbon dioxide in their breath reacts with the water to slightly acidify it. A little universal pH indicator in the water (or even cabbage juice indicator) shows the acidification pretty well if you make sure to keep a standard nearby so students can see the change in color.

The fact that the CO2 in your breath is enough to acidify water begs the question — which was asked — how much of the air you exhale is carbon dioxide? According to the Oak Ridge Carbon Dioxide Information Analysis Center’s FAQ page, it’s concentration is about 3.7% by volume. Which is a lot more than the 0.04% average of the atmosphere.

Of course if you really want to talk about the pH you need to get into the acid equilibrium and the dissociation of the carbonic acid to produce H+ ions; you can get the these details here.

Endothermic Reactions: Vinegar and Baking Soda

A quick and simple experiment that demonstrates endothermic reaction and can include a discussion of ionic and covalent bonds. Mixing baking soda and vinegar together drops the temperature of the liquid by about 4 °C in one minute. (Note that while the temperature drops and the reaction looks endothermic, it’s actually not — other things cause the cooling. However, since it looks like an endothermic reaction I use it as a first approximation of one.)

Ingredients

  • 3 g baking soda – (sodium bicarbonate – NaHCO3)
  • 60 ml vinegar – (acetic acid – CH3COOH)
  • 200 ml styrofoam cup (needs to be big enough to contain the bubbles).
  • thermometer

Procedure

Add the baking soda to the vinegar in the styrofoam cup. Measure the temperature while stirring for about a minute.

Results

Time (t) Temperature (°C)
0 25
15 24
30 21
60 21

Discussion

The chemical reaction between baking soda (sodium bicarbonate) and vinegar (acetic acid) can be written:

NaHCO3 + CH3COOH —-> CO2 + H2O + CH3OONa

The products of the reaction are carbon dioxide gas (which gives the bubbles), water, and sodium acetate.

However, a more detailed look shows that for the reaction to work the two chemicals need to be dissolved in water. Dissolving these ionic compounds causes the two ions to separate. Dissolved baking soda dissociates into a sodium and a bicarbonate ion:

sodium bicarbonate —-> sodium ion + bicarbonate ion

NaHCO3 —-> Na+ + HCO3

Why doesn’t the bicarbonate break into smaller pieces? Because it’s atoms are bonded together more tightly by covalent bonds.

Similarly, the acetic acid in vinegar dissociates into:

acetic acid —-> hydrogen ion + acetate

CH3COOH —-> H+ + CH3COO

This video has a nice overview of ionic versus covalent bonding.

References

More detail about the reaction can be found at:

About Fire (Flames Really)

Ben Ames explains the science of flames.

It skims over pyrolysis; chemiluminescence, where the chemical reaction (combustion/oxidation) produces excited atoms and molecules that need spit out (emit) blue light to get to their ground state); and the incandescent light emission of microscopic soot particles which produce the yellow parts of the flame.

I’m not sure who the guy chained to the rock is. It might be Prometheus, who stole fire from the gods, but I don’t remember him being sent into hell in the myth.

Limestone Quarry

The quarry's primary purpose is to extract limestone for construction.

The landfill/quarry we visited was originally a limestone quarry; once they had the hole in the ground they needed to fill it with something so why not trash (and why not get paid to fill it).

Shoveling boulders. The rock pieces look small but only because the shovel is so big.

The limestone bedrock is blasted daily to create some massive boulders. The boulders are then loaded on some equally massive dumptrucks. There are scarce few minutes between trucks, so a lot of rocks are being moved.

Dumptruck moving rocks. Massive boulders in the foreground.
Unloading dumptruck.

The trucks then dump their load into a large building where the rocks are crushed. Our guide made us stop the bus to watch the process. While watching a dumptruck unloading might seem mundane, the enormous size of the truck and its boulder load did seem to captivate the students.

Once the rocks are crushed, the resulting sediment is sorted by size (sand, pebbles and gravel, I think) and piled up. The piles are massive. I’ve been wanting a good picture that shows the angle of repose; I got several.

The angle of repose of a pile of sediment. Also notice the greenish color of the water in the pond to the bottom left. Water with lots of fine limestone particles (silt) and dissolved limestone, tends to have that color.

The pebbles and gravel are used for road construction and provide a matrix for concrete.

Since limestone dissolves fairly easily in rainwater, the sand-sized and smaller particles (< 2mm diameter) aren't used for construction -- hard, insoluble quartz sand is preferred.

Limestone: calcium carbonate (CaCO3)

However, the limestone sediment piles sit out in the open and some the finer grains (silt sized particularly), and any dissolve calcium carbonate, get washed into the nearby ponds, which turn a beautiful, bright, milky green.

Finally, in addition to the limestone sediment piles, there is also one enormous pile of broken up concrete. One of the things that stuck with the students was that fact that you can recycle concrete.

Methane from Landfills: The Uses Of

Methane in a landfill. It's produced by decomposing organic material, is extracted via wells, and is then burned to produce heat (for a school and a set of greenhouses) and electricity (soon anyway).

Decomposing waste in landfills produces quite a lot of methane gas (CH4). Perhaps better known as natural gas, methane is one of the simplest hydrocarbons, and a serious atmospheric pollutant (it’s a powerful greenhouse gas). In the past the methane produced was either released into the atmosphere or just burned off.

Greenhouses that are warmed by methane produced by the landfill. It's a cheap, close source of energy.

I remember seeing the offshore oil rigs burning natural gas all night long — multiple miniature sunrises on the horizon — in the days before the oil companies realized they could capture the gas and sell it or burn it to produce energy. The landfill companies have realized the same thing. So now, wells pockmark modern landfills and the methane is captured and used.

Looking down the slope of the landfill to see the Pattonville High School, which uses natural gas from the landfill for heating.

First, of course, the hydrogen sulfide gas (H2S), is separated from the methane — H2S produces acid rain, so it’s emissions are limited by the EPA — then, the gas from the landfill we visited, is piped to:

  • greenhouses, where it’s burnt to produce heat;
  • the Pattonville High School, which is right next to the landfill and burns the gas for heating;
  • and (soon) to a electricity generating power plant that will burn the gas to produce heat which will boil the water that will produce the steam that will turn the turbines that will generate the electricity.
Electric power plant -- still under construction -- that's fueled by methane from the landfill.

You may have noticed the common theme of all these uses of natural gas: it has to be burned to be useful. The combustion reaction is:

CH4 (g) + 2 O2 (g) —-> CO2 (g) + 2 H2O (g)

which produces carbon dioxide (CO2) that is also a greenhouse gas, but is, at least, not nearly as powerful at greenhouse warming as is methane.