Networks versus Trees: Ways of Analyzing the World

Manuel Lima contrasts the traditional, hierarchical, view of the world (evolution’s tree of life for example) to a more network oriented perspective.

One interesting part is the interpretation of the history of science as having three phases, dealing with Problems of:

  • Simplicity: Early scientific efforts (17th-19th centuries) was focused on “simple” models of cause and effect — embodied perhaps in Newton’s Laws, where every force has an equal and opposite force.
  • Disorganized Complexity: Think early 20th century nuclear physics — Heisenberg’s uncertainty principle for example — where the connections between events are complicated and sort of random/probabilistic.
  • Organized Complexity: Systems science sees the interrelatedness of everything: ecologic food webs; the Internet; horizontal gene transfer across the limbs of the tree of life.

RSA Animate The Dish

Momentum

A ball rolling down a ramp hits a car which moves off uphill. Can you come up with an experiment to predict how far the car will move if the ball is released from any height? What if different masses of balls are used?

Students try to figure out the relationship between the ball's release height and how far the car moves.

For my middle school class, who’ve been dealing with linear relationships all year, they could do this easily if the distance the car moves is directly proportional to height from which the ball was released?

The question ultimately comes down to momentum, but I really didn’t know if the experiment would work out to be a nice linear relationship. If you do the math, you’ll find that release height and the maximum distance the car moves are directly proportional if the momentum transferred to the car by the ball is also directly proportional to the velocity at impact. Given that wooden ball and hard plastic car would probably have a very elastic collision I figured there would be a good chance that this would be the case and the experiment would work.

It worked did well enough. Not perfectly, but well enough.

Surface Tension

Surface tension supports the water strider on the surface of the still water of the creek.

Down at the creek the water striders are out. They can stand, walk and jump on the surface of the water without penetrating the surface because of the force of surface tension that causes water molecules to stick together — it’s the same cohesive force that make water droplets stick to your skin. I got a decent set of photos to illustrate surface tension.

The water striders still create ripples on the surface of the water, even though they never break the surface.

The green canopy that over hangs the creek allows for some nice photographs.

Water strider in still water.

Searching for the Higgs Boson: How Science Really Works

PhD Comics does a wonderful job of explaining of sub-atomic particles: what we know, what we don’t know. What’s particularly great about this video is that it goes into how physicists are using the Large Hadron Collider to try to discover new particles: by making graphs of millions of collisions of particles and looking for the tiniest of differences between different predictions of what might be there.

I also like how clear they make the fact that science is a processes of discovery, and what fascinates scientists is the unknown. Students do experiments all the time and if they don’t find what they expect — if it “doesn’t work” — they’re usually very disappointed. I try my best to let them know that this is really what science is about. When your experiment does not do what you want, and you’re confident you designed it right, then the real excitement, the new discoveries, begin.

Pictures from the Royal Society

Knap-weed or matfelon and cornflower or bluebottle, by Richard Waller (1689) from The Royal Society's Picture Library.

The Royal Society’s Picture Library is now available online. It contains images from some of the seminal scientific works of the last four centuries. It’s an excellent resource for teachers and students, who, with registration, can get free high-resolution images for presentations and unpublished theses.

I’m particularly attracted to the biological drawings at the moment because I’m trying to get students to practice their scientific drawing and diagramming.

How to Write a Research Paper

An excellent series by the American Chemical Society starts with the basics of, “How to Write a Paper to Communicate Your Research,” but also addresses the question of why publish your research. It ought to help my students understand why I’m so insistent on lab reports.

ACS Publishing Pale Blue Blog

Personal Ceramic Project

I have a neat little tea strainer that sits inside my almost perfect teacup, yet I’m usually at a loss about what to do with it when I take it out of the cup. When the lid is upside down, the strainer can sit nicely into a circular inset that seem perfectly designed for it; however, if I want to use the lid to keep my tea warm — as I am wont to do — I have to move the strainer somewhere else.

One option is to just put the strainer in another cup, but then air can’t circulate around it, and instead of drying, the used tea leaves stay wet and, eventually, turn moldy. A flat saucer would be better, but not perfect.

Of course, I could just empty out the strainer, wash and dry it as soon as I’m done steeping the leaves, but there are a few ancillary considerations with respect to time that make this a sub-optimal solution.

So, since we have a kiln on campus that sees regular use, I thought I’d sit in on the Middle School art class and make my own ceramic tea strainer holder. Since I’ve also been thinking about Philip Stewart’s spiral, and de Chancourtois‘ helictical periodic tables, and been inspired by Bert Geyer’s attempts at making sonnets tangible, it eventually occurred to me that an open helictical form would work fairly well for my purposes.

I’ve cobbled together a design using Inkscape, and layered it onto a cylinder in Sketchup to see what it would look like.

Draft model of a tea strainer holder.

So far the reactions from students has been quite diverse. I have one volunteer who’s wants to help, and I’ve sparked some discussion as to if what I’m doing actually qualifies as art. There is a lot of curiosity though. The middle-schoolers will probably be doing some type of physical representation of the periodic table, so I’m hoping this project gets them to think more broadly about what they might be able to do.